簡易檢索 / 詳目顯示

研究生: 邱家宏
Chiu, Chia-Hung
論文名稱: 含裂縫移動樑之振動分析
Vibration Analysis of a Traveling Crack Beam
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 68
中文關鍵詞: 裂縫振動有限元素
外文關鍵詞: crack, finite-element, vibration
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要利用有限元素法分析含裂縫移動樑的振動行為。首先利用漢米爾頓原理與有限元素法推導軸向移動樑的運動方程式,並將裂縫視為一種扭轉彈簧,推導裂縫造成之局部可撓性和限制關係,結合兩者關係式,得到含裂縫移動樑的運動方程式。在動態穩定方面,本文採用Bolotin法則來分析含裂縫移動樑的動態穩定問題,最後利用狀態空間方法求得移動樑的不穩定區域。
    由結果顯示不同裂縫深度與裂縫位置對結構的自然振動頻率會有不同的影響,由未含裂縫樑的模態斜率分佈圖可看出其影響程度,模態斜率絕對值越大,裂縫位於此處對自然振動頻率影響越大,而移動的速度也會造成自然振動頻率、臨界速度的下降與動態穩定區域的向下偏移。

    The objective of this dissertation is to study the vibration of a traveling crack beam. The Hamilton’s principle and the finite element method are employed to derive the finite-element equations of motion for the traveling crack beam. The governing matrix equation for vibrations of the crack beam is constructed from the basic standard beam elements combined with the modified line-spring model. The regions of dynamic instability are determined by Bolotin’s method and the state space method.
    From numerical calculations, the results show that the natural frequencies can be affected by the crack depth and location. The effect of crack position is found to be the most significant, when the crack is at the point with the steepest slope of the uncrack mode shape. The speed of the traveling beam can reduce the natural frequencies and the critical speed.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號 IV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-3 論文大綱 4 第二章 理論分析 5 2-1 前言 5 2-2能量式推導 5 2-3有限元素模型推導 7 2-4裂縫造成之局部可撓性和限制方程式 10 2-5 邊界條件 13 2-6 動態穩定性分析 13 第三章 結果與討論 19 3-1 前言 19 3-2有限元素模型比對 19 3-3自然振動分析 20 3-4動態穩定性分析 22 3-5結論 23 第四章 綜合討論與未來展望 61 4-1 綜合討論 61 4-2 未來發展 62 參考文獻 63 自述 68

    1.B. P. Shastry and G. Venkateswara Rao, 1984 Computer & Structures 19, 5/6, 823-827. Dynamic Stability of Bars Considering Sher Deformation and Rotatory Inertia.
    2.S. P. Timoshenko, 1921 Philosophical Magazine, 41, 744-746. On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars.
    3.S. P. Timoshenko, Van Nostrand Company, Inc.,New York , N Y., 1940, 170-171, Strength of materials – Part 1,second edition, D.
    4.R. D. Mindlin and H. Deresiewicz, 1953 Technical Report 10,ONR Project NR064-388, Department of Civil Engineering, Columbia University, New York, N. Y. Timoshenko’s Shear Coefficient for Flexural Vibrations of beams.
    5.L. E. Goodman and J. G. Sutherland, 1951 Journal of Applied Mechanics, Trans. ASME, 73, 217-218.discussion of paper, Natural Frequencies of Continuous Beams of Uniform Span Length.
    6.R. J. Roark, 1954, McGraw-Hill Book Company, Inc., New York, N. Y.third edition, 119-121. Formulas for Stress and Strain.
    7.G. R. Cowper, 1966 Journal of Applied Mechanics, Trans. ASME, 33, June, 335-340. The Shear Coefficient in Timoshenko’s Beam Theory.
    8.R. Barakat, 1967 Journal of the Acoustical Society of America 43, 533-539. Transverse vibrations of a moving thin rod.
    9.A. Simpson, 1973 Journal of Mechanical Engineering Science 15, 159-164. Transverse modes and frequencies of beams translating between fixed end supports.
    10.H. M. Nelson, 1979 Journal of Sound and Vibration 65, 381-389. Transverse vibration of a moving strip.
    11. A. G. Ulsoy, C. D. Mote Jr and R. Syzmani, 1978 Holz als Roh-und Werkstoff 36, 273-280. Principal developments in band saw vibration and stability research.
    12. J. A. Wickert and C. D. Mote Jr, 1988 Shock and Vibration Digest 20, 3-13. Current research on the vibration and stability of axially moving materials.
    13. S. Chonan, Journal of Sound and Vibration 107, 155-165. Steady state response of an lateral load.
    14. E. J. Patula, 1976 Journal of Applied Mechanics ASME Series E 43, 475-479. Attenuation of concentrated loads in a thin moving elastic strip.
    15. W. L. Miranker, 1960 IBM Journal of Research and Development 4, 36-42. The wave equation in medium in motion.
    16. C. D. Mote Jr, 1975 Journal of Dynamic Systems, Measurement and Control 97, 96-98. Stability of systems transporting accelerating axially moving materials.
    17. M. Pakdemirli, A. G. Ulsoy and A. Ceranoglu, 1994 Journal of Sound and Vibration 169, 179-196. Transverse vibration of an axially accelerating string.
    18. M. Pakdemirli and H. Batan, 1993 Journal of Sound and Vibration 168, 371-378. Dynamic stability of a constantly accelerating strip.
    19.D. L. Thomas, J. M. Wilson and R. R. Wilson, 1973 Journal of Sound and Vibration, 31, 3, 315-330. Timoshenko Beam Finite Elements.
    20.J. Thomas and B. A. H. Abbas, 1975 Journal of Sound and Vibration, Vol.41, No. 3, 291-299. Finite Element Model for Dynamic Analysis of Timoshenko Beam.
    21.Gudmundson P. 1982 J. Mech Phys Solids 30, 339-353. Eigenfrequency Changes of Structures due to Cracks, Notches or other Geometrical Changes.
    22.Gudmundson P. 1983 J. Mech Phys Solids, 31, 329-345.The Dynamic Behaviour of Slender Structures with Cross-Sectional Cracks.
    23.Cawley P. Adams RD. 1979 J Strain Analysis ,14, 309-313. The Location of Defects in Structures from Measurements of Natural Frequencies.
    24.Yuen MMF. 1985 Journal of Sound and Vibration, 103, 301-310. A Numerical Study of the eigenparamters of a Damaged Cantilever.
    25.Gounaris G, Dimarogonas AD. 1988 Computers & Structures 28, 309-313. A finite Element of a Cracked Prismatic Beam for Structural Analysis.
    26.Qian GL, Gu SN, Jiang JS. 1990 Computers & Structures. Vol.138, 233-243. The Dynamic Behavior and Crack detection of a Beam for Structural Analysis.
    27.Rizos PF, Aspragathos N, Dimarogonas AD. 1990 Journal of Sound and Vibration. 138, 381-388. Identification of Crack Location and Magnitude in a Cantilever Beam from the Vibration Modes.
    28.Hen MHH, Taylor JE. 1990 Journal of Sound and Vibration. 138, 457-494. An Identification Problem for Vibrating Cracked Beams.
    29.Hen MHH, Chu YC. Computers & Structures. 45, 1991, 457-484. Vibrations of Beams with a Fatigue Crack.
    30.Abraham ONL, Brandon JA. 1995 J Vibr Acoustics-Trans ASME 117, 370-377. The Modeling of the Opening and Closure of a Crack.
    31.V. V. Bolotin, 1964 San Francisco: Holiden Day. The Dynamic Stability of Elastic Systems.
    32.L. Briseghella and C. Pellegrino, 1978 Computers & Structures, 69, 11-25 Dynamic Stability of Elastic Structures: a Finite Element Approach.
    33.S. Dost and P. G. Glockner, 1982 International Journal of Solids and Structures 18, 587-596. On the dynamic stability of viscoelastic perfect columns.
    34.S. Naguleswaran and C. J. H. Williams, 1968 International Journal of Mechanical Science 10, 239-250. Lateral vibrations of bandsaw blades, pulley belts and the like.
    35.M. Pakdemirli and A. G. Ulsoy, 1997 Journal of Sound and Vibration 203, 815-832. Stability analysis of an axially accelerating string.
    36.H. Tada, P. C. Paris and G. R. Irwin 1973 The Stress Analysis of Cracks Handbook Hellertown, Pensylvania:Del Research Corp.
    37.David Broak 1986 Elementary Engineering Facture Mechanics Boston, Martinus Nijhoff Publishers.
    38.K. K. Stevens and R. M. Evan-Iwanowski, 1969 International Journal of Solids and Structures 5, 755-765. Parametric resonance of viscoelastic columns.
    39.J.A.Wickert 1990, Int. J. Non-lear Mechanics, 27, 3, 503-517, Non-Linear Vibration of a Traveling Tensioned Beam.
    40. M. Chati, R. Rand and S. Mukherjee, 1997 Journal of Sound and Vibration, 207, 249-270, Modal Analysis of a Cracked Beam.

    下載圖示 校內:2005-07-28公開
    校外:2006-07-28公開
    QR CODE