研究生: |
陳皇均 Chen, Huang-Jun |
---|---|
論文名稱: |
探討疊差能對冷軋黃銅、鎳及銅織構與微結構之影響 Effect of Stacking Fault Energy on Cold-Rolling Texture and Microstructure of Brass, Nickel and Copper |
指導教授: |
郭瑞昭
Kuo, Jui-Chao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 疊差能 、鎳 、銅 、黃銅 、微結構組織 、織構 、X光繞射 、電子背向散射繞射 |
外文關鍵詞: | Stacking fault energy, Microstructure, Texture, XRD, EBSD |
相關次數: | 點閱:90 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面心立方金屬變形組織、軋延織構及再結晶織構受疊差能影響甚巨,因此本研究針對面心立方金屬探討疊差能於冷軋延過程中織構演化,實驗材料為多晶鎳、銅、及黃銅,鎳、銅、及黃銅分別代表著高中低三種不同疊差能的面心立方金屬,而壓延量分別為30%、60%和90%。冷軋後以XRD和EBSD分析冷軋織構和顯微組織。
研究結果為鎳與銅經軋延90%後於β-fiber有著整體強度上升的趨勢晶體方位轉至Copper{112}<111>、S{123}<634>和Brass{110}<112>方位分量,顯示高疊差能材料其冷軋織構為Copper型織構,並於微結構出現層狀次晶粒結構以降低其系統應變能。
冷軋黃銅中則顯示於軋延30%之後為數多的晶粒因機械雙晶的產生由Copper{112}<111>轉向TC{552}<115>和接近Goss{110}<001>方位,使由Copper型織構轉變為Brass型織構;於冷軋90%時剪切帶出現並由Goss{110}<001>轉向Brass{110}<112>,顯示低疊差能材料冷軋後為Brass型織構,且剪切帶集中區域有著應變能下降之回復現象。
In this study evolution of texture and microstructure in nickel, copper and brass of fcc metals was investigated. X-ray diffraction and electron backscatter diffraction techniques were used to characterize microstructures and orientation distributions of specimens after 30, 60 and 90% thickness reductions.
It was found that nickel and copper of high and medium SFE materials show Copper-type texture, and have high orientation densities along the whole β-fiber with increasing deformation. Micro-shear bands are formed when D orientation rotates to Copper and Goss orientation.
For brass after 30% reduction the orientation of deformed grains changes from Copper {112} <111> to TC{552}<115> close to Goss {110} <001>. Furthermore, the texture type also changes from Copper to Brass type. After 90% cold rolling, shear bands occur in brass and the orientation changes from Goss{110}<001> to Brass{110}<112>.
[1] U.F. Kocks, C.N. Tomé, H.R. Wenk, Texture and Anisotropy:Preferred Orientation in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, Cambridge, 1998, pp. 12-43.
[2] J. Hirsch and K. Lücke, "Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline fcc metals—I. Description of rolling texture development in homogeneous CuZn alloys," Acta Metallurgica, vol. 36, pp. 2863-2882, 1988.
[3] R. K. Ray, "Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys," Acta metallurgica et Materialia, vol. 43, pp. 3861-3872, 1995.
[4] C. Donadille, R. Valle, P. Dervin, and R. Penelle, "Development of texture and microstructure during cold-rolling and annealing of FCC alloys: Example of an austenitic stainless steel," Acta metallurgica, vol. 37, pp. 1547-1571, 1989.
[5] G. L. Wu, A. Godfrey, D. J. Jensen, and Q. Liu, "Deformation strain inhomogeneity in columnar grain nickel," Scripta materialia, vol. 53, pp. 565-570, 2005.
[6] S. Li, P. Van Houtte, and S. R. Kalidindi, "A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method," Modelling and Simulation in Materials Science and Engineering, vol. 12, p. 845, 2004.
[7] S. G. Chowdhury, S. Das, and P. De, "Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel," Acta materialia, vol. 53, pp. 3951-3959, 2005.
[8] R. E. Smallman and D. Green, "The dependence of rolling texture on stacking fault energy," Acta Metallurgica, vol. 12, pp. 145-154, 1964.
[9] J. Hirsch, K. Lücke, and M. Hatherly, "Overview No. 76: Mechanism of deformation and development of rolling textures in polycrystalline fcc Metals—III. The influence of slip inhomogeneities and twinning," Acta Metallurgica, vol. 36, pp. 2905-2927, 1988.
[10] N. Jia, P. Eisenlohr, F. Roters, D. Raabe, and X. Zhao, "Orientation dependence of shear banding in face-centered-cubic single crystals," Acta Materialia, vol. 60, pp. 3415-3434, 2012.
[11] T. Leffers and R.K. Ray, "The brass-type texture and its deviation from the copper-type texture," Progress in Materials Science, vol. 54, pp. 351-396, 2009.
[12] N. Jia, F. Roters, P. Eisenlohr, C. Kords, and D. Raabe, "Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass," Acta Materialia, vol. 60, pp. 1099-1115, 2012.
[13] L. E. Murr, "Interfacial phenomena in metals and alloys," Boston, Addison-Wesley 1975.
[14] B. J. Duggan, M. Hatherly, W. B. Hutchinson, and P. T. Wakefield, "Deformation structures and textures in cold-rolled 70: 30 brass," Metal Science, vol. 12, pp. 343-351, 1978.
[15] N. Hansen, "Cold deformation microstructures," Materials science and technology, vol. 6, pp. 1039-1047, 1990.
[16] T. Morikawa and K. Higashida, "Deformation microstructure and texture in a cold-rolled austenitic steel with low stacking-fault energy," Materials transactions, vol. 51, pp. 620-624, 2010.
[17] A. Rollett, F. J. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed, Amsterdam, Boston: Elsevier, 2004.
[18] A. Howie and P. Swann, "Direct measurements of stacking-fault energies from observations of dislocation nodes," Philosophical Magazine, vol. 6, pp. 1215-1226, 1961.
[19] E. Aerts, P. Delavignette, R. Siems, and S. Amelinckx, "Stacking fault energy in silicon," Journal of Applied Physics, vol. 33, pp. 3078-3080, 1962.
[20] D. Cockayne, M. Jenkins, and I. Ray, "The measurement of stacking-fault energies of pure face-centred cubic metals," Philosophical Magazine, vol. 24, pp. 1383-1392, 1971.
[21] P. Gallagher, "The influence of alloying, temperature, and related effects on the stacking fault energy," Metallurgical transactions, vol. 1, pp. 2429-2461, 1970.
[22] R. Schramm and R. Reed, "Stacking fault energies of seven commercial austenitic stainless steels," Metallurgical Transactions A, vol. 6, pp. 1345-1351, 1975.
[23] E. El-Danaf, S. R. Kalidindi, and R. D. Doherty, "Influence of grain size and stacking-fault energy on deformation twinning in fcc metals," Metallurgical and Materials Transactions A, vol. 30, pp. 1223-1233, 1999.
[24] S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, "Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys," Materials Science and Engineering: A, vol. 387, pp. 158-162, 2004
[25] L. Schulz, "A Direct Method of Determining Preferred Orientation of a Flat Reflection Sample Using a Geiger Counter X‐Ray Spectrometer," Journal of Applied Physics, vol. 20, pp. 1030-1033, 1949.
[26] G. Wassermann. Der Einfluss mechanischer Xwillingsbildung auf die Entstehung der Walztexturen kubisch fl"a" ̈chenzentrierter Metalle. Z. Metallk., vol 54, pp. 61-65, 1963.
[27] 謝秉穎, "泰勒模型模擬F.C.C.金屬中剪切帶之織構研究," 國立成功大學材料科學及工程學系, 碩士論文, 2015.
[28] Y. Nakayama and K. Morii, ' Microstructure And Shear Band Formation In Rolled Single-Crystals Of Al-Mg Alloy ', Acta Metallurgica, 1987, 35, pp. 1747-1755.
[29] Y. Nakayama and K. Morii, ' Microstructure And Shear Band Formation In Rolled Single-Crystals Of Al-Mg Alloy ', Acta Metallurgica, 1987, 35, pp. 1747-1755.
[30] P. Wagner, O. Engler and K. Lucke, ' Formation Of Cu-Type Shear Bands And Their Influence On Deformation And Texture Of Rolled Fcc {112} <111> Single-Crystals ' , Acta Metallurgica Et Materialia, 1995, vol. 43, pp. 3799-3812.
[31] A. S. Malin and M. Hatherly, "Microstructure of cold-rolled copper," Metal Science, vol. 13, pp. 463-472, 1979.
[32] H. Yan, X. Zhao, N. Jia, Y. Zheng, and T. He, "Influence of shear banding on the formation of brass-type textures in polycrystalline fcc metals with low stacking fault energy," Journal of Materials Science & Technology, vol. 30, pp. 408-416, 2014.
[33] C. S. Lee and B. J. Duggan, "Deformation banding and copper-type rolling textures," Acta metallurgica et materialia, vol. 41, pp. 2691-2699, 1993.
[34] Y. Zhou, K. W. Neale, and L. S. Toth, "Analytical solutions for the ideal orientations of FCC rolling textures," Acta metallurgica et materialia, vol. 39, pp. 2921-2930, 1991.
[35] W. H. Wang, X. Sun, G. D. Köhlhoff, and K. Lücke, "Orientation Determination by Continuous Etching Patterns in Copper and Copper Alloys," Texture, Stress, and Microstructure, vol. 24, pp. 199-219, 1995.
[36] B. R. Kumar, B. Mahato, N. R. Bandyopadhyay, and D. K. Bhattacharya, "Comparison of rolling texture in low and medium stacking fault energy austenitic stainless steels," Materials Science and Engineering: A, vol. 394, pp. 296-301, 2005.
[37] J. Pospiech, J. Jura, A. Mucklich, K. Pawlik, and M. Betzl, "Deformation And Recrystallization Textures Of Polycrystalline Nickel," Textures and Microstructures, vol. 6, pp. 63-79, 1983.
[38] P. H.Gerber, J. Tarasiuk, T. H. Chauveau, and B. Bacroix, "A quantitative analysis of the evolution of texture and stored energy during annealing of cold rolled copper," Acta materialia, vol. 51, pp. 6359-6371, 2003.
[39] T. Lyman and American Society for Metals Handbook Committee, "Metallography, structures and phase diagrams," American Society for Metals, Russell Township, 1973.
[40] P. Wagner, O. Engler, and K. Lücke, "Formation of Cu-type shear bands and their influence on deformation and texture of rolled fcc {112}< 111> single crystals," Acta metallurgica et materialia, vol. 43, pp. 3799-3812, 1995.
[41] L. Lapeire, J. Sidor, E. M. Lombardia, K. Verbeken, I. De Graeve, H. Terryn, and L. A. I. Kestens, "Texture comparison between cold rolled and cryogenically rolled pure copper," IOP Conference Series: Materials Science and Engineering, vol. 82, pp. 12-16, 2015.
[42] B. Bacroix and J. J. Jonas, "The influence of non-octahedral slip on texture development in fcc metals," Texture, Stress, and Microstructure, vol. 8, pp. 267-311, 1988.
[43] P. C. J. Gallagher, "The influence of alloying, temperature, and related effects on the stacking fault energy," Metallurgical transactions, vol. 1, pp. 2429-2461, 1970.
[44] L. Schulz, "A Direct Method of Determining Preferred Orientation of a Flat Reflection Sample Using a Geiger Counter X‐Ray Spectrometer," Journal of Applied Physics, vol. 20, pp. 1030-1033, 1949.