簡易檢索 / 詳目顯示

研究生: 廖永璿
Liao, Yung-Hsuan
論文名稱: 1,3-二碘苯在Cu(100)表面上的熱反應與吸附位向的研究
Thermal Chemistry and Adsorption Orientation of 1,3-Diiodobenzene on a Cu(100) surface
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 67
中文關鍵詞: 超高真空系統銅單晶反射式紅外吸收光譜程溫脫附
外文關鍵詞: UHV, TPR/D, RAIRS, crystal
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文是以程序控溫反應/脫附(Temperature-programmed reaction/desorption,TPR/D)、歐傑電子能譜學(Auger Electron Spectroscopy,AES)和反射式吸收紅外光譜學(reflection absorption infrared spectroscopy,RAIRS)等技術,於超高真空系統中,研究
    1,3-Diiodobenzene分子在Cu(100)表面上的熱反應與存在於表面上的反應中間體。在低曝露量下(≦1monolayer),1,3-Diiodobenzene分子在表面溫度為~340 K時,會分解成meta-benzyne和碘原子吸附在表面。溫度繼續升高至~500 K後,表面上的meta-benzyne會開始分解產生氫氣脫附。980 K時,表面上只留下碳,而碘原子已脫附。在高曝露量下(2~3 monolayer),1,3-Diiodobenzene的分子性脫附出現在247 K(來自第二層)和234 K(來自第三層)。當曝露量繼續增加,分子性脫附峯的溫度有往高溫偏移的現象,顯示mutilayer(指第二層以後)的脫附屬於一零級的反應。在Cu(100)表面,曝露量在1~2 mololayer的範圍下,1,3-Diiodobenzene分子吸附的位向為π-ring平行於Cu(100)表面。當吸附的量到達第三層時,則顯示第三層分子的吸附開始轉為π-ring傾斜於表面的吸附。

     Temperature-programmed reaction/desorption (TPR/D), Auger electron spectroscopy (AES) and reflection-absorption infrared spectroscopy (RAIRS) have been employed to investigate the thermal decomposition of 1,3-Diiodobenzene on Cu(100) and the surface intermediates involved.
    At low surface coverages (≦1 monolayer), 1,3-Diiodobenzene dissociates at ~340 K on Cu(100) surface to form adsorbed meta-benzyne and atomic I. The meta-benzyne subsequently decomposes at ~500 K to form H2(g). By 980 K, atomic I is completely desorbed, but carbon is left on the surface due to the dehydrogenation of meta-benzyne. At coverages of 2~3 monolayers, 1,3-Diiodobenzene desorbs molecularly at 247 K (second-layer) and 234 K (third-layer). The peak temperatures of molecularly desorption (Tmax) shift to higher temperatures with increasing exposures, indicating that the multilayer (≧3 monolayer) desorption is a zero-order process. The adsorbed 1,3-Diiodobenzene molecules at 1~2
    monolayers coverage are adsorbed with their π-rings approximately parallel to the surface plane. However as the exposure is increased to a coverage ≧3 monolaylers, the molecules adopt an orientation with their π-rings inclining from the surface.

    第一章、緒論………………………………………….…….1 1.1 表面的定義……………………………………………1 1.2 表面吸附………………………………………………1 1.3 真空的定義及應用……………………………………2 1.4 研究1,3-Diiodobenzene的動機...…………………3 第二章、表面研究之分析技術………………………………7 2.1 歐傑電子能譜分析………………………………………7 2.2 程式控溫反應/脫附法.…………………………………12 2.3 反射式紅外光譜儀分析…………………………………14 第三章、實驗系統與方法……………………………………17 3.1 超高真空系統……………………………………………17 3.2 Cu(100)單晶表面的清潔……….………………………19 3.3 藥品及其前處理…………………………………………21 第四章、結果與討論…………………………………………22 4.1 1,3-Diiodobenzene在Cu(100)表面上的吸附及反應..22 4.1.1 程序控溫反應/脫附(TPR/D)實驗……………………22 4.1.2 歐傑電子能譜分析實驗………………………………37 4.1.3 反射式吸收紅外光譜實驗……………………………45 4.1.4反應機制的討論……………………………….………58 第五章、結論…………………………………………………65 參考文獻………………………………………………………66

    1.Xi, M.; Bent, B. E. Surf. Sci. 278, 19-32, 1992.
    2.Xi, M.; Bent, B. E. J. Am. Chem. Soc. 115, 7426-7433, 1993.
    3.Hla, S. W.; KüHnle, A.; Bartels, L.; Meyer, G.; Rieder, K. H. Surf. Sci.454, 1079-1084, 2000.
    4.McCarty, G. S.;Weiss, P. S. J. Am. Chem. Soc. 126, 16772-16776, 2004.
    5.McCarty, G. S.;Weiss, P. S. J. Phys. Chem. B. 106, 8005-8008, 2002.
    6.Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley& Sons. New York, p43-98, 1997.
    7.Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley& Sons. New York, p99-133, 1997.
    8.Ertl, G.: Kuppers, J. Low Energy Electrons and Surface Chemistry, Verlag Chemie, Germany, p22, 1974.
    9.林敬二, 林宗義, 儀器分析(下), 美亞書版, 第384頁, 1994年
    10.Purtton, M, Surface Physis, Oxford University Press, 1983.
    11.Ma, D.; Cai, Q. Org. Lett. 5, 3799-3802, 2003.
    12.Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 5, 4987-4990, 2003.
    13.國立成功大學化學所 李明羲碩士論文 2001.
    14.Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley& Sons, New York, p278, 1997.
    15.Cabibil, H.; Ihm, H.; White, J. M. Surf. Sci. 447, 91-104, 2000.
    16.Syomin, D.; Koel, B. E. Surf. Sci. 490, 265-273, 2001.
    17.Haq, S.; King, D. A. J. Phys. Chem. 100, 16957-16965, 1996.
    18.Kang, J. -H.; Toomes, R. L.; Robinson, J.; Woodruff, D. P.; Schaff, O.; Terborg, R.; Lindsay, R.; Baumgärtel, P.; Bradshaw, A. M. Surf. Sci. 448, 23-32,2000.
    19.Jaramillo, D. M.; Hunka, D. E.; Land, D. P. Surf. Sci. 445, 23-31, 2000.
    20.Song, P.; Gardner, P.; Conrad, H.; Bradshaw, White, J. M. Surf. Sci. 248, L279-L284, 1991.
    20.Green, J. H. S. Spectrochim. Acta. 26A, 1523-1533, 1970.
    21.Xi, M.; Yang, M. X.; Jo, S. K.; Bent, B. E. J. Chem. Phys. 10, 101, 1994.
    22.Meyers, J. M.; Gellman, A. J. Surf. Sci. 337, 40-50, 1995.
    23.Nelson, E. D.; Artau, A.; Price, J. M.; Tichy, S. E.; Jing, L.; Kenttämaa, H. I. J. Phys. Chem. A. 105, 10155-10168, 2001.
    24.Marquardt, R.; Sander, W.; Kraka, E. Angew. Chem., Int. ed. Eng. 35, 746, 1996.
    25.Sander, W. Acc. Chem. Res. 32, 669-676, 1999.
    26.Blake, M. E.; Bartlett, K. L.; Maitland Jones, Jr. J. Am. Chem. Soc. 125, 6485-6490, 2003.
    27.Wenthold, P. G.; Squires, R. R.; Lineberger, W. C. J. Am. Chem. Soc. 120,
    5279-5290, 1998.
    28.Marquardt, R.; Balster, A.; Sander, W.; Kraka, E.; Cremer, D.;Radziszewski, J. G. Angew. Chem., Int. ed. Eng. 37, 955 1998.
    29.Fisher, I. P.; Lossing, F. P. J. Am. Chem. Soc. 85, 1019, 1963.
    30.Sykes, E. C. H.; Han, P.; Kandel, S. A.; Kelly, K. F.; Mccarty, G. S.; Weiss, P. S. Acc. Chem. Res. 36, 945-953, 2003.
    31.T. W. Graham Solomons, Craig B. Fryhle. Organic Chemistry, 7th. Ed.,
    , John Wiley & Sons, Inc.

    下載圖示 校內:立即公開
    校外:2005-07-04公開
    QR CODE