| 研究生: |
廖永璿 Liao, Yung-Hsuan |
|---|---|
| 論文名稱: |
1,3-二碘苯在Cu(100)表面上的熱反應與吸附位向的研究 Thermal Chemistry and Adsorption Orientation of 1,3-Diiodobenzene on a Cu(100) surface |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 超高真空系統 、銅單晶 、反射式紅外吸收光譜 、程溫脫附 |
| 外文關鍵詞: | UHV, TPR/D, RAIRS, crystal |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是以程序控溫反應/脫附(Temperature-programmed reaction/desorption,TPR/D)、歐傑電子能譜學(Auger Electron Spectroscopy,AES)和反射式吸收紅外光譜學(reflection absorption infrared spectroscopy,RAIRS)等技術,於超高真空系統中,研究
1,3-Diiodobenzene分子在Cu(100)表面上的熱反應與存在於表面上的反應中間體。在低曝露量下(≦1monolayer),1,3-Diiodobenzene分子在表面溫度為~340 K時,會分解成meta-benzyne和碘原子吸附在表面。溫度繼續升高至~500 K後,表面上的meta-benzyne會開始分解產生氫氣脫附。980 K時,表面上只留下碳,而碘原子已脫附。在高曝露量下(2~3 monolayer),1,3-Diiodobenzene的分子性脫附出現在247 K(來自第二層)和234 K(來自第三層)。當曝露量繼續增加,分子性脫附峯的溫度有往高溫偏移的現象,顯示mutilayer(指第二層以後)的脫附屬於一零級的反應。在Cu(100)表面,曝露量在1~2 mololayer的範圍下,1,3-Diiodobenzene分子吸附的位向為π-ring平行於Cu(100)表面。當吸附的量到達第三層時,則顯示第三層分子的吸附開始轉為π-ring傾斜於表面的吸附。
Temperature-programmed reaction/desorption (TPR/D), Auger electron spectroscopy (AES) and reflection-absorption infrared spectroscopy (RAIRS) have been employed to investigate the thermal decomposition of 1,3-Diiodobenzene on Cu(100) and the surface intermediates involved.
At low surface coverages (≦1 monolayer), 1,3-Diiodobenzene dissociates at ~340 K on Cu(100) surface to form adsorbed meta-benzyne and atomic I. The meta-benzyne subsequently decomposes at ~500 K to form H2(g). By 980 K, atomic I is completely desorbed, but carbon is left on the surface due to the dehydrogenation of meta-benzyne. At coverages of 2~3 monolayers, 1,3-Diiodobenzene desorbs molecularly at 247 K (second-layer) and 234 K (third-layer). The peak temperatures of molecularly desorption (Tmax) shift to higher temperatures with increasing exposures, indicating that the multilayer (≧3 monolayer) desorption is a zero-order process. The adsorbed 1,3-Diiodobenzene molecules at 1~2
monolayers coverage are adsorbed with their π-rings approximately parallel to the surface plane. However as the exposure is increased to a coverage ≧3 monolaylers, the molecules adopt an orientation with their π-rings inclining from the surface.
1.Xi, M.; Bent, B. E. Surf. Sci. 278, 19-32, 1992.
2.Xi, M.; Bent, B. E. J. Am. Chem. Soc. 115, 7426-7433, 1993.
3.Hla, S. W.; KüHnle, A.; Bartels, L.; Meyer, G.; Rieder, K. H. Surf. Sci.454, 1079-1084, 2000.
4.McCarty, G. S.;Weiss, P. S. J. Am. Chem. Soc. 126, 16772-16776, 2004.
5.McCarty, G. S.;Weiss, P. S. J. Phys. Chem. B. 106, 8005-8008, 2002.
6.Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley& Sons. New York, p43-98, 1997.
7.Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley& Sons. New York, p99-133, 1997.
8.Ertl, G.: Kuppers, J. Low Energy Electrons and Surface Chemistry, Verlag Chemie, Germany, p22, 1974.
9.林敬二, 林宗義, 儀器分析(下), 美亞書版, 第384頁, 1994年
10.Purtton, M, Surface Physis, Oxford University Press, 1983.
11.Ma, D.; Cai, Q. Org. Lett. 5, 3799-3802, 2003.
12.Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 5, 4987-4990, 2003.
13.國立成功大學化學所 李明羲碩士論文 2001.
14.Vickerman, J. C. Surface Analysis-The Principle Techniques, John Wiley& Sons, New York, p278, 1997.
15.Cabibil, H.; Ihm, H.; White, J. M. Surf. Sci. 447, 91-104, 2000.
16.Syomin, D.; Koel, B. E. Surf. Sci. 490, 265-273, 2001.
17.Haq, S.; King, D. A. J. Phys. Chem. 100, 16957-16965, 1996.
18.Kang, J. -H.; Toomes, R. L.; Robinson, J.; Woodruff, D. P.; Schaff, O.; Terborg, R.; Lindsay, R.; Baumgärtel, P.; Bradshaw, A. M. Surf. Sci. 448, 23-32,2000.
19.Jaramillo, D. M.; Hunka, D. E.; Land, D. P. Surf. Sci. 445, 23-31, 2000.
20.Song, P.; Gardner, P.; Conrad, H.; Bradshaw, White, J. M. Surf. Sci. 248, L279-L284, 1991.
20.Green, J. H. S. Spectrochim. Acta. 26A, 1523-1533, 1970.
21.Xi, M.; Yang, M. X.; Jo, S. K.; Bent, B. E. J. Chem. Phys. 10, 101, 1994.
22.Meyers, J. M.; Gellman, A. J. Surf. Sci. 337, 40-50, 1995.
23.Nelson, E. D.; Artau, A.; Price, J. M.; Tichy, S. E.; Jing, L.; Kenttämaa, H. I. J. Phys. Chem. A. 105, 10155-10168, 2001.
24.Marquardt, R.; Sander, W.; Kraka, E. Angew. Chem., Int. ed. Eng. 35, 746, 1996.
25.Sander, W. Acc. Chem. Res. 32, 669-676, 1999.
26.Blake, M. E.; Bartlett, K. L.; Maitland Jones, Jr. J. Am. Chem. Soc. 125, 6485-6490, 2003.
27.Wenthold, P. G.; Squires, R. R.; Lineberger, W. C. J. Am. Chem. Soc. 120,
5279-5290, 1998.
28.Marquardt, R.; Balster, A.; Sander, W.; Kraka, E.; Cremer, D.;Radziszewski, J. G. Angew. Chem., Int. ed. Eng. 37, 955 1998.
29.Fisher, I. P.; Lossing, F. P. J. Am. Chem. Soc. 85, 1019, 1963.
30.Sykes, E. C. H.; Han, P.; Kandel, S. A.; Kelly, K. F.; Mccarty, G. S.; Weiss, P. S. Acc. Chem. Res. 36, 945-953, 2003.
31.T. W. Graham Solomons, Craig B. Fryhle. Organic Chemistry, 7th. Ed.,
, John Wiley & Sons, Inc.