| 研究生: |
鍾哲允 Zhong, Jimmy |
|---|---|
| 論文名稱: |
在MOCVD反應器中各種流速對流動特性的影響 The Influence of Various Flow Rates on Flow Features in MOCVD Reactor |
| 指導教授: |
李汶樺
Matthew Smith |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 有機化學氣像沉澱(MOCVD) 、行星反應器 、噴淋式反應器平行反應器 、牛頓法 、雙狗腿法 、數值模擬 |
| 外文關鍵詞: | MOCVD, Planetary Reactor, Showerhead Reactor, Horizontal Reactor, Newton Method, Double Dogleg Method, Numerical Simulation |
| 相關次數: | 點閱:104 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要討論,在MOCVD(有機化學氣像沉澱)反應器中各種流速對流動特性的影響。目前兩個最被廣泛使用的反應器將會在本研究中介紹,而其中之一的反應器,可被視為平行MOCVD反應器的集合體。因此,我們將會模擬一個以平行反應器為基礎的模型,作為對MOCVD反應器之特性研究的依據。而在我們模擬的過程中,兩個不同的非線性求解器將被使用,也將會討論此兩求解器的特性以及效率。在本文最後,速度固定但不同壓力下的反應器之模擬結果,以及固定壓力但不同速度下之模擬結果將被比較以及討論。
Presented is an investigation into the influence of various flow rates on flow features within a MOCVD (Metal-Organic Chemical Vapor Deposition) reactor. Two most commonly used reactors designs are introduced, with one of these generally regarded as an aggregate of a horizontal reactor. Based on this, we employ a simple test reactor geometry commonly used for MOCVD research and develop simulation models for the modelling of the flow and chemical reaction process within. A variety of solvers are investigated for the given governing equations, including two different non-linear solvers, with the methods and efficiency of these solvers discussed in brief detail. The outcome of the simulations demonstrate that the flowrate of type III and type V gas flows through the reactor plays a key role in the location of the production of the target molecule for deposition (based on TMGA-type MOCVD) and where flow speeds are too high, the rate of reaction is low enough that the uniformity on the wafer is impacted.
[1] Theodoropoulos C, Ingle NK, Mountziaris TJ. Computational studies of the transient behavior of horizontal MOVPE reactors. Journal of Crystal Growth
1997; 170:72–6.
[2] Sugiyama M, Kusunoki K, Shimogaki Y, Sudo S, Nakano Y, Nagamoto H, et al.
Kinetic studies on thermal decomposition of MOVPE sources using fourier transform infrared spectroscopy. Applied Surface Science 1997; 117–118:746–52.
[3] Talalaev RA, Yakovlev EV, Karpov SY, Makarov YN. On low temperature kinetic effects in metal-organic vapor phase epitaxy of III-V compounds. Journal of Crystal Growth 2001; 230:232–8.
[4] Oh H-J, Sugiyama M, Nakano Y, Shimogaki Y. Surface reaction kinetics in
metaorganic vapor phase epitaxy of GaAs through analyses of growth rate profile in wide-gap selective-area growth. Japan Journal of Applied Physics 2003; 42:6284–91.
[5] Karpov SY. Advances in the modeling of MOVPE processes. Journal of Crystal
Growth 2003; 248:1–7.
[6] Song H, Song X, Sugiyama M, Nakano Y, Shimogaki Y. Effect of surface misori- entation on the kinetics of GaAs MOVPE examined using selective area growth. Electrochemical and Solid-State Letters 2006; 9: G104–6.
[7] Klejin CR, Dorsman R, Kuijlaars KJ, Okkerse M, Santen H. Multi-scale modeling of chemical vapor deposition processes for thin film technology. Journal of Crystal Growth 2007; 303:362–80.
[8] Onitsuka R, Sugiyama M, Shimogaki Y, Nakano Y. Reactor-scale profile of group-V composition of InGaAsP studied by fluid dynamics simulation and in situ analysis of surface kinetics. Journal of Crystal Growth 2008; 310:3042–8.
[9] Lam ND, Kim Y, Kim K, Jung K, Kang HK, Lee J. Improved optical absorption and photocurrent of GaAs solar cells with hexagonal micro-hole array surface texturing. Journal of Crystal Growth 2012, 370:244–8.
[10] Tanya Paskova and Keith R. Evans, “GaN Substrates—Progress, Status, and Prospects”, Ieee Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 4, July/August 2009
[11] E.J. Thrush, A.R. Boyd, in: Z.C. Feng (Ed.), III-Nitride Semicon-ductor Materials, Imperial College Press, London, 2006 pp. 41–116
[12] P.M. Frijlink, “A New Versatile, Large Size MOVPE Reactor”, Journal of Crystal Growth 93 (1988) 207-215
[13] P.M. Frijlink, Nicolas J L, Ambrosius H. P. M. M., et al. “The radial flow planetary reactor low pressure versus atmospheric pressure MOVPE.” Journal of Crystal Growth 115(1991) 203-210.
[14] Cheul-Ro Lee, Sung-Jin Son, In-Hwan Lee, Jae-Young Leema, Sam Kyu Noh, “High-quality GaN epilayer grown by newly designed horizontal counter-flow MOCVD reactor”, Journal of Crystal Growth 182 (1997) 11-16.
[15] Ik-Tae Im, , Masakazu Sugiyama, Yukihiro Shimogaki, Yoshiyaki Nakano, “A numerical study on heat transfer and film growth rate of InP and GaAs MOCVD process”, Journal of Crystal Growth 276 (2005) 431–438.
[16] Yao-Chen Chuang, Chyi-Tsong Chen, “Mathematical modeling and optimal design of an MOCVD reactor for GaAs film growth”, Journal of the Taiwan Institute of Chemical Engineers 45 (2014) 254–267.
[17] Gu Chengyan, Lee Chengming, Liu Xianglin, “Design of a three-layer hot-wall horizontal flow MOCVD reactor”, Journal of Semiconductors, vol. 33, No. 9, (Sep. 2012), pp. 093005-1 to 093005-5.
[18] Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, Andreas Stricker, “PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation”, Future Generation Computer Systems 18 (2001) 69–78.
[19] Olaf Schenk, Klaus Gärtner, ”Solving unsymmetrical sparse systems of linear equations with PARDISO”, Future Generation Computer Systems 20 (2004) 475–487.
[20] I. S. Duff and J. Koster., “The design and use of algorithms for permuting large entries to the diagonal of sparse matrices”, SIAM J. Matrix Analysis and Applications, 20(4):889–901, 1999.
[21] Olaf Schenk, Klaus Gärtner, “Parallel Sparse Direct Solver PARDISO - User Guide Version 5.0.0”, Updated February 07, 2014
[22] A. M. Buchanan, A. W. Fitzgibbon, “Damped Newton Algorithms for Matrix Factorization with Missing Data”, Department of Engineering Science, Oxford University, UK.
[23] Ya-xiang Yuan, “A review of trust region algorithms for optimization”, Chinese Academy of Sciences, P. O. Box 2719, Beijing 100080, China.
[24] Drew Philip Kouri, “A Nonlinear Response Model for Single Nucleotide Polymorphism Detection Assays”, Department of Mathematics, Case Western Reserve University, August 2008 pp. 18-24
[25] B. F. Armalyt, F. Dursts, J.C. F. Pereira, B. Schonung, “Experimental and theoretical investigation of backward-facing step flow”, J. Fluid Mech. (1983), vol. 127 pp. 473496.
[26] Frank P.Incropera, David P.Dewitt, Theodore L. Bergman, Adrienne S. Lavine, “Principle of Heat and Mass Transfer”, Seveth Edition pp 995
[27] Matthew R. Smith, Jimmy Zhong, Josh Chang, “Parallel Simulation of Three Dimensional MOCVD Using an Approximate Riemann Solver and Graphics Processing Units”, department of Mechanical Engineering, National Cheng Kung University, Taiwan
[28] C. R. Wilke, “A Viscosity Equation for Gas Mixtures”, Journal of Chemical Physics Volume 18. Number 4 April, 1950.
[29] Sutherland, W. (1893), "The viscosity of gases and molecular force", Philosophical Magazine, S. 5, 36, pp. 507-531 (1893).
[30] Cussler, E. L. (1997). Diffusion: Mass Transfer in Fluid Systems (2nd ed.). New York: Cambridge University Press. ISBN 0-521-45078-0.
[31] Akira Hirako, Kazuhide Kusakabe, Kazuhiro Ohkawa, “Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa / NH3 / H2 System: A Computational Fluid Dynamics Simulation Study, Japanese Journal of Applied Physics, Vol. 44, No. 2, 2005 pp. 874–879.
[32] Jingxi Sun, J.M. Redwing, T.F. Kuech, “Model Development of GaN MOVPE Growth Chemistry for Reactor Design”, Journal of Electronic Materials, Vol. 29, No. 1, 2000.
[33] Rinku P. Parikh, Raymond A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, Journal of Crystal Growth 286 (2006) 259–278.
[34] Nitride CVD module, STR GmbH, PO Box 1207, 91002 Erlangen, Germany.
[35] C. Martina, M. Dauelsberga, H. Protzmanna, A.R. Boydb, E.J. Thrushb, M. Heukena, R.A. Talalaevc, E.V. Yakovlevd, A.V. Kondratyevd, “Modelling of group-III nitride MOVPE in the closed coupled showerhead reactor and Planetary Reactor”, Journal of Crystal Growth 303 (2007) 318–322.
[36] M. Dauelsberga, C. Martina, H. Protzmanna, A.R. Boydb, E.J. Thrushb, J. Ka¨ ppelera, M. Heukena, R.A. Talalaevc, E.V. Yakovlevd, A.V. Kondratyevd, “Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors”, Journal of Crystal Growth 298 (2007) 418–424.
[37] D. Brien, M. Dauelsberg, K. Christiansen, J. Hofeldt, M. Deufel, M. Heuken, “Modelling and simulation of MOVPE of GaAs-based compound semiconductors in production scale Planetary Reactors”, Journal of Crystal Growth 303 (2007) 330–333.
[38] M. Dauelsberg, L. Kadinski, Yu.N. Makarov, T. Bergunde, G. Strauch, M. Weyers, “Modeling and experimental veri"cation of transport and deposition behavior during MOVPE of Ga1-x In x P in the Planetary Reactor”, Journal of Crystal Growth 208 (2000) 85-92.
[39] Rinku P. Parikh, Raymond A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, Journal of Crystal Growth 286 (2006) 259–278.