簡易檢索 / 詳目顯示

研究生: 蘇琪
Suci , Pratiwi
論文名稱: 加載方案對箱柱連接節點抗震性能的影響
Effect of Loading Protocols on Seismic Evaluation of Box-Column Connections
指導教授: 賴啟銘
Lai, Chi-Ming
共同指導教授: 張惠雲
Chang, Heui-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 89
中文關鍵詞: 循環載重高強度鋼箱型柱加勁肋ANSYS有限元素分析耐震性能
外文關鍵詞: cyclic loading, high-strength steel, box column, stiffener, ANSYS, finite element analysis, seismic performance
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用 ANSYS 有限元素分析探討高強度鋼箱型柱(HBC-20-25)在地震作用下的耐震性能。研究採用三種循環載重協定(A、B、C),評估雙側與四側加勁肋配置對結構行為之影響,涵蓋彎矩承載力、剛度退化、Von Mises 應力分佈及等效塑性應變(PEEQ)等項目。模擬結果與 Chou 和 Chen(2020)之實驗數據進行驗證,並與 AISC 與 Eurocode 3 設計規範進行比較。研究發現,加勁肋對初始峰值強度影響適中,但在控制塑性變形、提升延展性及延緩高位移下局部破壞方面,其作用愈加關鍵。四側加勁肋配置在所有協定下表現皆優於雙側配置,其中在協定 B 與 C 下彎矩承載力分別提高約 26% 與 24%。Von Mises 應力分析揭示了早期局部屈曲現象,而 PEEQ 分析顯示塑性應變於四側加勁肋試體中受到更有效的限制。本研究強調加勁肋配置及載重協定對提升箱型柱耐震韌性的重要性。

    This study investigates the seismic performance of high-strength steel box columns (HBC-20-25) using finite element analysis in ANSYS. Three cyclic loading protocols (A, B, and C) were applied to evaluate the effects of two-sided and four-sided stiffener configurations on structural behavior, including moment capacity, stiffness degradation, Von Mises stress distribution, and equivalent plastic strain (PEEQ). The results were validated against experimental data from Chou and Chen (2020) and compared with AISC and Eurocode 3 design provisions. The findings demonstrate that while stiffeners have a moderate effect on initial peak strength, their role becomes increasingly significant in controlling plastic deformation, improving ductility, and delaying local failure at larger drift levels. The four-sided stiffener configuration consistently outperformed the two-sided configuration, showing moment capacity improvements of up to 26% under Protocol B and 24% under Protocol C. Von Mises stress analysis revealed early local buckling, while PEEQ analysis confirmed that plastic strain was better confined in the four-sided stiffener specimens. The study underscores the role of stiffeners and loading protocols in enhancing the seismic resilience of box columns.

    摘要 I ABSTRACT II TABLE OF CONTENTS III LIST OF TABLES VI LIST OF FIGURE VII LIST OF SYMBOL IX CHAPTER ONE INTRODUCTION 11 1.1 Background 11 1.2 Research Objectives 11 1.3 Scope of Study 12 1.4 Thesis Structure 12 CHAPTER 2 LITERATURE REVIEW 13 2.1 Finite Element Method (FEM) and ANSYS 13 2.2 High-Strength Steel Box Column in Seismic Applications 14 2.3 Cyclic Loading Protocols 17 2.4 Role of Stiffeners in Box Columns 20 2.5 Von Mises Stress and Plastic Strain 21 2.6 Axial-Moment Interaction and Eurocode Design 21 2.7 Axial-Moment Interaction and AISC Design 23 CHAPTER 3 FINITE ELEMENT ANALYSIS 26 3.1 General Framework of ANSYS 26 3.1.1 Static Strutural 27 3.2 FEM Simulation and Meshing 28 3.2.1 Hollow Section Model 28 3.2.2 Material Nonlinearity 31 3.2.3 Boundary Condition 33 3.3 Validation By Test Data 38 3.3.1 Von Mises 40 3.3.2 Equivalent Plastic Strain (PEEQ) 43 3.3.3 Comparison with Experimental and Standard Design 45 CHAPTER 4 PARAMETRIC STUDY AND SEISMIC PERFORMANCE EVALUATION 46 4.1 Introduction 46 4.2 Cyclic Loading Protocol 46 4.2.1 Protocol A 47 4.2.2 Protocol B 48 4.2.3 Protocol C 49 4.3 Simulation Result 50 4.3.1 Protocol A 50 4.3.2 Protocol B 59 4.3.3 Protocol C 68 4.4. Evaluation of Simulation Results 76 4.4.1 Effect of Protocol Type on Moment Capacity 76 4.4.2 Effect of Stiffener Addition on Structural Response 79 4.4.3 Comparison with Standard Design 80 4.4.4 Analysis of Axial Load and Moment Interaction Curve (P-M Interaction Curve) 82 CHAPTER 5 CONCLUSION AND SUGGESTION 84 5.1 Conclusion 84 5.2 Suggestion 85 REFERENCES 86

    [1] Chou, C.-C., & Chen, G.- W. (2020) Lateral cyclic testing and backbone curve development of high-strength steel built-up box columns under axial compression. Engineering Structures, 223, 111147.
    [2] Alahakoon, H., H Uy, B., Zhu, X., Aslani, F., & Thai, H. T. (2024). Performance of composite steel–concrete columns with novel stiffener arrangements under cyclic loads.
    [3] Ghassemieh, M., Hassani Sokhtesaraei, M., & Mirghaderi, S. R. (2021). The behavior of welded moment connections in box-columns and investigating applied demands for different cyclic loading protocols. International Journal of Steel Structures, 21(2), 455–474
    [4] Katsimpini, I., & Hatzigeorgiou, G. D. (2025). Residual drift and energy dissipation capacity of self-centering steel frames subjected to pulse-type ground motions. International Journal of Steel Structures, 25, 215–229.
    [5] Liu, Y. -F., Chou, C.-C., Chung, C.-Y., & Huang, H.-C. (2024). Near-fault response and loading protocols of box columns in steel frames with self-centering braces to provide recentering capability. Advances in Civil Engineering, 2024, Article ID 7970436.
    [6] European Committee for Standardization (CEN). (2005). Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings (EN 1993-1-1). Brussels: European Committee for Standardization.
    [7] Imani, M., Ghobarah, A., & Paultre, P. (2020). Local buckling and residual strength of high-strength steel columns. Journal of Constructional Steel Research, 167, 105920.
    [8] El-Tawil, S.,T Mikesell, and S.K. Kunnath, Effect of local details and yield ratio on behavior of FR steel connections. Journal of structural engineering, 2000 ASCE 126(1): 79-87
    [9] Xiang, G., Pownuk, A., Kosheleva, O., & Starks, S. (2007). Von Mises Failure Criterion in Mechanics of Materials: How to Efficiently Use it Under Interval and Fuzzy Uncertainty. NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society, 570-575.
    [10] Kim, N.H., B.V. Sankar, and A.V Kumar, Introduction to finite element analysis and design. 2018: John Wiley & Sos.
    [11] Chen, X. and Y. Liu, Finite element modeling and simulation with ANSYS Workbench. 2014. 2014: CRC press
    [12] F., Escolano-Margarit, D., & Ortega-Pérez, F. (2013). Seismic performance of high-strength steel hollow section columns subjected to axial-moment interaction. Journal of Constructional Steel Research, 85, 171–183.
    [13] Chou, C.-C., & Wu, S.-C. (2019). Cyclic lateral load test and finite element analysis of high-strength concrete-filled steel box columns under high axial compression. Engineering Structures, 189, 89–99.
    [14] Wang, J.-C., Ou, Y.-C., Chang, K.-C., & Lee, G. C., 2008, Earthquake Engineering & Structural Dynamics, DOI: 10.1002/eqe.824)
    [15] Elkady, A., & Lignos, D. G., 2014, Bulletin of Earthquake Engineering, 12, 1363–1381..
    [16] American Institute of Steel Construction. (2016). Specification for Structural Steel Buildings (AISC 360-16). Chicago, IL: AISC.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE