簡易檢索 / 詳目顯示

研究生: 劉仁傑
Liu, Ren-Jay
論文名稱: 在精密時間協定下以無線感測網路為基礎之分散式量測系統
A Wireless Sensor Network Based Distributed Measurement System under Precision Time Protocol
指導教授: 楊中平
Young, Chung-Ping
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 83
中文關鍵詞: 無線感測網路、時間同步、IEEE 1588、分散式系統、IEEE 802.15.4
外文關鍵詞: Wireless Sensor Networks, Time Synchronization, IEEE 802.15.4, distributed system, IEEE 1588
相關次數: 點閱:149下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時間同步在無限網路感測是一個很重要的議題,特別是在分散式測量系統。IEEE 1588標準協定是定義精確的時鐘同步協定使用在網路量測與控制。在這篇論文中,我們提出了一個Hierarchy Reference Broadcast Synchronization (HRBS)演算法,是應用在IEEE標準802.15.4上的無線感測網路。我們提出的架構結合了PTP協定和HRBS演算法,它的工作分成三個步驟:首先,網路伺服器透過GPS可以取得世界標準時間,並且使用PTP協定讓網路上其它的裝置的時間校正成和網路伺服器的時間相同。第二步驟,其中一個被PTP校正過的裝置和無線感測網路上的一個感測器相連接,並且將它的時間傳給這個感測器。我們使用HRBS將所有在無線感測網路上的感測器做時間同步,我們使用Linux主機和Chipcon CC2430 Demonstration Kits開發平台來做實驗,最後我們分析PTP和HRBS的準確率和效能評估。發展成一個基於PTP下的分散式無線感測網路測量系統。

    Time synchronization is an important aspect in wireless sensor networks, especially in distributed measurement system. IEEE 1588 is a standard for precise clock synchronization for network measurement and control systems in LAN environment. In the thesis, we present a time synchronization mechanism, named Hierarchy Reference Broadcast Synchronization (HRBS), for wireless sensor networks based on IEEEE 802.15.4 standard. The proposed system architecture is a hybrid of PTP protocol and HRBS algorithm. It works in three steps. In the first step, the Internet server receives the UTC (universal time coordinated) time from GPS. PTP synchronization is used to translate its clock value to the server’s clock by other devices in LAN. The second step, one of the synchronized devices is connect to the sensor node in the wireless sensor network. The synchronized device sent its time stamp to this sensor node. We use HRBS protocol to synchronize all sensor nodes clock in the wireless sensor network. Our implement is using the Linux PCs and Chipcon CC2430 Demonstration Kits. In the finally, we evaluate the PTP and the HRBS time synchronization accuracy and performance. We develop into a wireless s ensor network base on the distributed measurement system under precise time protocol.

    摘要 i Abstract ii 致謝 iii LIST OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x CHAPTER 1 Introduction 1 1.1 Overview of Wireless Sensor Networks 1 1.1.1 Components of a Sensor Node 1 1.1.2 Sensor Network Applications 4 1.2 Motivation 5 1.2.1 The Need for Synchronized Time in Ethernet 5 1.2.2 The Need for Synchronized Time in Wireless Sensor Network 6 1.3 Organization of This Thesis 6 CHAPTER 2 Related Works 7 2.1 Basic Concepts of Time Synchronization 7 2.1.1 Decomposition of Packet Delay 7 2.1.2 Traditional Time Synchronization Approaches 9 2.2 Time Synchronization in Wireless Sensor Network 11 2.2.1 Challenges in Wireless Sensor Network 11 2.2.2 Existing Time Synchronization Approaches for WSN 12 2.2.2.1 Reference Broadcast Synchronization 13 2.2.2.2 Timing-sync Protocol for Sensor Network 14 2.2.2.3 Hierarchy Referencing Time Synchronization 16 CHAPTER 3 Technology Background 18 3.1 IEEE 1588 – Precision Clock Synchronization Protocol for Network Measurement and Control System 18 3.1.1 Operational overview 19 3.1.2 PTP Message Exchange 21 3.1.3 IEEE 1588 Clock Offset Measurement 22 3.1.4 IEEE 1588 Network Delay Measurement 23 3.1.5 IEEE 1588 with Switch 26 3.2 IEEE 802.15.4 Standard 27 CHAPTER 4 Proposed HRBS Algorithm for WSN 31 4.1 Basic Idea and Assumption 31 4.2 HRBS – Hierarchy Reference Broadcast Synchronization 32 4.3 Estimating Clock Skew 34 CHAPTER 5 Hardware Architecture 36 5.1 System Hardware Architecture 36 CHAPTER 6 Software Architecture 40 6.1 System Software Architecture 40 6.1.1 EPIA MII Software Architecture 40 6.1.2 CC2430DK Software Architecture 42 6.2 Summary 43 CHAPTER 7 Implementation 44 7.1 System Architecture Overview 44 7.2 Implementation Setup 45 7.2.1 Source of Standard Time 45 7.2.2 Communication 47 7.2.2.1 Time Stamp Layer 47 7.2.2.2 Operation of the Network Driver 49 7.2.2.3 TCPdump 51 7.2.2.4 PTP Stack 53 7.2.3 Wireless Sensor Network 55 CHAPTER 8 Experimental Results 60 8.1 IEEE 1588 Synchronization Accuracy 60 8.2 IEEE 1588 Accuracy Issues 62 8.3 CC2430 Synchronization Accuracy 64 8.4 CC2430 Synchronization Accuracy Issues 65 8.5 Simulate Calculation 67 CHAPTER 9 Conclusion and Future Work 70 9.1 Conclusion 70 9.2 Future Work 70 REFERENCES 71 Annex A PTP Protocol 77 A.1 Protocol model of a clock 77 A.2 Protocol model of a subdomain of PTP clocks 79

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless Sensor Networks:
    A Survey”, Computer Networks Journal), Vol.38, No.4, pp.393-422, 2002.
    [2] P. Rentala, R. Musunuri, S. Gandham, U. Saxena, “Survey of Sensor Networks”,
    University of Texas at Dallas, Tech. Report #UTDCS-10-03, 2002.
    [3] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, J. Zhao “Habitat Monitoring:
    Application Driver for Wireless Communications Technology”, Proceedings of the
    First ACM SIGCOMM Workshop on Data Communications, 2001.
    [4] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, “Wireless Sensor
    Networks for Habitat Monitoring”, Proceedings of the first ACM International
    Workshop on Wireless Sensor Networks and Applications, pp.88-97, 2002.
    [5] P. Bonnet, J. Gehrke, P. Seshadri, “Querying the Physical World”, IEEE Personal
    Communications, pp.10-15, 2000.
    [6] ALERT official website:
    http://www.alertsystems.org/
    [7] L. Schwiebert, S. K. S. Gupta, J. Weinmann, “Research Challenges in Wireless
    Networks of Biomedical Sensors”, Proceedings of the 7th Annual International
    Conference on Mobile Computing and Networking, pp.151-165, 2001.
    [8] E. M. Petriu, N. D. Georganas, D. C. Petriu, D. Makrakis, V. Z. Groza, “Sensor-based
    Information Appliances”, IEEE Instrumentation and Measurement Magazine,
    pp.31-35, 2000.
    [9] M. Srivastava, R. Muntz and M. Potkonjak, “Smart Kindergarten: Sensor-based
    Wireless Networks for Smart Developmental Problem-solving Environments”,
    Proceedings of the Seventh Annual International Conference on Mobile Computing
    and Networking, pp.132-138, 2001.
    [10] S. Ganeriwal, R. Kumar, M. B. Srivastava, “Timing-sync Protocol for Sensor
    Networks”, Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp.138-149, 2002.
    [11] Chipcon CC1000 Radio Datasheet: http://www.chipcon.com/files/CC1000_Data_Sheet_2_1.pdf
    [12] F. Cristian, “Probabilistic Clock Synchronization”, Distributed Computing, Vol.3, pp.146-158, 1989.
    [13] D. L. Mills, “Internet Time Synchronization: The Network Time Protocol”, IEEE Transaction on Communications, Vol.39, No.10, pp.1482-1493, 1991.
    [14] NTP official website:
    http://www.ntp.org/
    [15] G. Pottie and W. Kaiser, “Wireless Integrated Network Sensors”, Communications of
    the ACM, Vol.43, No.5, pp.51–58, 2000.
    [16] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Synchronization using
    Reference Broadcasts”, Proceedings of the Fifth Symposium on Operating Systems Design and Implementation, Vol.36, pp.147-163, 2002.
    [17] J. Elson and D. Estrin, “Time Synchronization for Wireless Sensor Networks”,
    Proceedings of the 2001 International Parallel and Distributed Processing
    Symposium, pp.1965-1970, 2001.
    [18] H. Dai and R. Han. “TSync: A Lightweight Bidirectional Time Synchronization
    Service for Wireless Sensor Network“, ACM SIGMOBILE mobile Computing and
    Communications Review, pp. 125-139, 2004.
    [19] J. C.Eidson, K. Lee, “IEEE 1588 standard for a precision clock synchronization
    protocol for networked measurement and control systems”, Sensors for Industry
    Conference, 2002. 2nd ISA/IEEE, pp. 98-105, 2002.
    [20] IEEE Std 1588-2002 IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, Institute of Electrical and Electronics Engineers, Inc., 2002.
    [21] J. C.Eidson, K. Lee, “Sharing a common sense of time”, IEEE Instrumentation and Measurement Magazine, pp. 26-32, 2003.
    [22] Dirk S. Mohl “IEEE 1588 – Precise Time Synchronization as the Basic for Real Time
    Applications in Automation”, 2003.
    [23] 802.15.4-2003 IEEE Standard for Information Technology- Part 15.4: Wireless
    Medium Access Control (MAC) and Physical Layer (PHY) specification for Low
    Rate Wireless Personal Area Networks (LR-WPANS), 2003.
    [24] ZigBee Alliance website:
    http://www.zigbee.org.
    [25] Microchip Application Note 965:Microchip Stack for the ZigBee Protocol.
    [26] Rikaline: 6010-X5 GPS Receiver Website: http://www.pocketgpsworld.com/rikaline-gps-6010-x5.php.
    [27] VIA EPIA MII website:
    http://www.mini-itx.com/.
    [28] SmartRF04EB and CC2430EM user menu: http://www.chipcon.com/files/CC2430ZDK_Development_Kit_Pro.pdf.
    [29] Intel “Hardware-Assisted IEEE 1588 Implementation in the Intel IXP46X Product Line”, 2005.
    http://www.intel.com/design/network/papers/305068.htm
    [30] Jonathan Corbet, Alessandro Rubini and Greg Kroah-Hartman , “Linux Device
    Drivers, 3ed”, O'Reilly, 2006.
    [31] Chipcom CC2430 Satasheet
    http://www.chipcon.com/files/CC2430_Data_Sheet_rev1p03.pdf
    [32] Chung-Ping Young and Michael J. Devaney “Digit power metering manifold”, IEEE
    T Transactions on Instrumentation and Measurement, Vol.47, pp. 224-228, 1998.
    [33] J. A. Asumadu and M. J. Devaney, “Algorithm for the design of a low cost digital ac panel meter,” in Proc. IEEE IMTC/94, pp. 1132–1135, 1994.
    [34] A. C. Corney and R. T. Pullman, “Digital sampling laboratory watt meter”, IEEE
    Trans. Instrum. Meas., Vol. 36, pp. 54–59, 1987.
    [35] J. J. Hill and W. E. Alderson, “Design of a microprocessor-based digital watt meter,”
    IEEE Trans. Ind. Electron. Contr. Instrum., Vol. 28, no.3, pp. 180–184, 1981.
    [36] R. S. Turgel, “Digital watt meter using a sampling method”, IEEE Trans. Instrum.
    Meas, Vol. IM-23, pp. 337–341, 1974.
    [37] Prof. Hans Weibi and Dominic Bechaz “Implementation and Performance of Time
    Stamping Techniques”. In: 2004 Conference on IEEE 1588, Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, NIST, 2004.
    [38] Thomas Müller, Alexander Ockert, Hans Weibel: “PHYs and Symmetrical Propagation Delay”, 2004 Conference on IEEE 1588, pp. 27-29, 2004.
    [39] Hans Weibel, Dominic Béchaz: “IEEE 1588 Implementation and Performance of Time Stamping Techniques”, 2004 Conference on IEEE 1588, 2004.
    [40] IEEE 1588 official website
    http://ieee1588.nist.gov/
    [41] Zürcher Hochschule Winterthur Institute of Embedded Systems website:
    http://ines.zhwin.ch/ieee1588/
    [42] B. Sundararaman, U. Buy, A. D. Kshemkalyani, “Clock Synchronization for Wireless
    Sensor Networks: A Survey”, Ad Hoc Networks, Vol.3, No.3, pp.281-323, 2005.
    [43] R. Gusella, S. Zatti, “The Accuracy of the Clock Synchronization Achieved by
    TEMPO in Berkeley UNIX 4.3BSD”, IEEE Transactions on Software Engineering,
    Vol.15, pp.847-853, 1989.
    [44] M. L. Sichitiu and Chanchai Veerarittiphan, “Simple, Accurate Time Synchronization
    for Wireless Sensor Networks”, Proceedings of IEEE Wireless Communications and
    Networking Conference, pp.1266-1273, 2003.
    [45] M. Maróti, B. Kusy, G. Simon, Á. Lédeczi, “The Flooding Time Synchronization
    Protocol”, Proceedings of the 2nd International Conference on Embedded Networked
    Sensor Systems, pp.39-40, 2004.
    [46] E. Callaway, P. Gorday, L. Hester, J. A. Gutierrez, M. Naeve, B. Heile, V. Bahl,
    “Home Networking with IEEE 802.15.4: A Developing Standard for Low-Rate
    Wireless Personal Area Networks”, IEEE Communications Magazine, special issue on Home Networking, Vol.40, No.8, pp.70-77, 2002.
    [47] J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, B. Heile, “IEEE
    802.15.4: A Developing Standard for Low-Power Low-Cost Wireless Personal Area
    Networks“ , IEEE Network, Vol.15, No.5, pp.12-19, 2001.
    [48] Su, W.; Akyildiz, I.F. “Time-diffusion synchronization protocol for wireless sensor
    networks“, IEEE Networking, IEEE/ACM Transactions, Vol 13, Issue 2, pp. 384-397, 2005.
    [49] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed
    diffusion for wireless sensor networking,” IEEE Trans. Networking, Vol. 11, no.1, pp. 2–16, 2003.
    [50] J. Levine, “Time synchronization over the internet using an adaptive frequency-locked
    loop,” IEEE Trans. Ultrason., Ferroelectr., Freq. Contr., Vol. 46, no. 4, pp. 888–896, 1999.
    [51] D. L. Mills, “Internet time synchronization: the network time protocol,” in Global
    States and Time in Distributed Systems, IEEE Computer Society Press, 1994.
    [52] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination
    function,” IEEE J. Select. Areas Commun., Vol. 18, no. 3, pp. 535–547, 2000.
    [53] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “SPAN: an energy- efficient
    coordination algorithm for topology maintenance in ad hoc wireless networks,” in Proc. ACMMobiCom, pp. 85–96, 2001.
    [54] Ashraf, I.; Gkelias, A.; Dohler, M.; Aghvami, A.H, “Time-synchronised multi-piconet bluetooth environments”, Communications, IEE Proceedings- Vol 153, pp.445–452, 2006.
    [55] Kee-Young Shin; Kang Yong Lee; Kwangyong Lee, “CRIT: A Hierarchical Chained-Ripple Time Synchronization in Wireless Sensor Networks”, IEEE International Conference, pp.797–802, 2006.
    [56] Jooyeol Yang; Kyunwhoon Cheun, “Improved symbol timing synchronization for IEEE 802.11a/g wireless LAN systems in multipath channels”, IEEE Conference, pp.291–292, 2006.
    [57] Gurewitz, O.; Cidon, I.; Sidi, M. “Network Classless Time Protocol Based on Clock Offset Optimiz”, IEEE Trans. Vol 14, Issue 4, pp.876–888, 2006.

    下載圖示 校內:2009-09-14公開
    校外:2009-09-14公開
    QR CODE