| 研究生: |
王盟強 Wang, Meng-chiang |
|---|---|
| 論文名稱: |
pH值對以θ-Al2O3/boehmite水性漿料系統製備< 100 nm α-Al2O3之影響 pH Impact of Nano-Structural Processing on < 100 nm Alpha-Alumina Particle Fabrication |
| 指導教授: |
顏富士
Yen, Fu-su |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | pH值調整 、凝聚體 |
| 外文關鍵詞: | pH value adjusting, agglomerate |
| 相關次數: | 點閱:107 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討θ-Al2O3/boehmite混合水系漿料系統,因其pH值不同可能形成的θ-Al2O3/boehmite凝聚狀態差異,可致以其乾膠熱處理所得之α-Al2O3粒體特性也不同。使用之θ-Al2O3/boehmite原料重量比固定為30對82.35(Al2O3/Al2O3=30/70)。混合後漿料固粒含量為20 wt%。兩成分的混合採取兩種方式:系統A是先將二者分散良好(pH=4)再混合,再調整為不同的pH漿料系統。系統B則將兩成分各調整至預定相同pH後再混合。混好樣品均以DTA觀察系統粉末之熱行為,瞭解其α-Al2O3出現溫度。利用XRD、BET、TEM等儀器進行所得煆燒樣品之特性分析。
研究結果顯示:混合系統(A、B)均會隨pH升高而有較大凝聚體產生且θ-到α-Al2O3的相轉換溫度有隨pH值升高而延後發生的現象。兩種方式均有可能形成類似core(θ-Al2O3)–shell(boehmite)之結構。二者因pH值不同產生的最大差異在於A系統可造成相近的θ-Al2O3/boehmite分佈關係,凝聚體粒子間距離雖改變,但core-shell的質量不變,因此對於所得到的α-Al2O3粒子也因此差異不大。B系統則因二成分已先作凝聚狀態的改變,當進入混合形成core-shell時,θ-Al2O3凝聚體大者會導致core-shell顆數的減少,每顆質量變大。結果可知B系統透過pH調整,可對所得之α-Al2O3粉末晶徑進行調整。
In this study, the mixed slurries of θ-Al2O3 and boehmite may be different in the agglomeration by pH value adjusting. The characterizations of α-Al2O3 were further different by calcining the mixed slurries of θ-Al2O3 and boehmite. The alumina ratio of θ-Al2O3 to boehmite was 30 to70.The solid contain of θ-Al2O3 and boehmite were 20 wt%. There were two ways to mix. First, pH value of A system adjusted after two dispersal materials mixing. Second, two materials mixed after two materials adjusting pH value variously. The thermal behavior of the samples, which were from the mixed slurries, was examined by differential thermal analysis (DTA). The characterizations of α-Al2O3, which were form the mixed slurries, were examined by XRD、BET、TEM analysis.
The results showed that: A、B systems both arise larger agglomerates and lead to a higher transformation temperature when pH value is higher. This two ways may both bulid homo-core(θ-Al2O3)-shell(boehmite) structure. Although the agglomeration has changed, the mass of core-shell was in the same which caused the size of α-Al2O3 constant in A system. Contrarily, because the two components had changed in the agglomeration, the larger agglomerate of θ-Al2O3 caused the number of core-shell lower and the mass of core-shell biger. Finally, the size of α-Al2O3 could be altered via pH adjusting in B system.
1. T. G. Peason, “The Chemical Background of the Aluminum Industry”,
Monograph of the Royal Institute of Chemistry, London, 1995.
2. 汪建民,陶瓷技術手冊 ( 下),中華民國粉末冶金協會,中華民國 83 年。
3. R. W. Siegel, S. Ramasamy, H. Hahn, R. Gronsky, Z. Q. Li, and T. Lu,
“Synthesis, Characterization, and Properties of Nanophase TiO2”, J. Mater.
Res., 3 1367-1372 (1988).
4. M. Ciftcioglu and M. J. Mayo, “Processing of Nanocrystalline Ceramics”,
pp.77-86 in Superplasticity in Merals, Ceramics, and Intermetallics(Mater.
Res. Soc. Symp. Proc. 196), Edited by M. J. Mayo, M. Kobayashi, and J.
Wadsworh, Pittsburgh, MRS, 1990.
5. T. G. Nieh, C. M. McNally, and J. Wadsworth, “Superplasticity in
Intermetallic Alloys and Ceramics”, JOM, 41, 31-35 (1989).
6. M. Uchic, H. H. Hofler, W. J. Flick, R. Tao, P. Kurath, and R. S. Averback,
“Sinter-Forging of Nanophase TiO2”, Scripta Metall. Mater., 26, 791-796
(1992).
7. A. Tonejc, A. M. Tonejc and D. Bagovic, “Comparison of the
transformation sequence from γ -AlOOH (boehmite) to α-Al2O3
(corundum) induced by heating and by ball milling”, Materials Science and
Engineering, 1227-1231 (1994).
8. Y. Wang, C Suryanarayana, and L. An, “Phase Transformation-Sized γ
-Alumina by Mechanical Milling”, J. Am. Ceram. Soc., 88 [3] 780-783
(2005).
9. S. Liu, L. Zhang, and L. An, “Phase Transformation of Mechanically Milled
Nano-Sized γ-Alumina”, J. Am. Ceram. Soc., 88 [9], 2559-2563 (2005).
10. P. K. Sharma, M. H. Jilavi, D. Burgard, R. Nass, and H. Schmidt,
“Hydrothermal Synthesis of Nanosize α-Al2O3 from Seeded AluminumHydroxide”, J. Am. Ceram. Soc., 81 [10], 2732-2734 (1998).
11. J. Yang, S. Mei, and José M. F. Ferreira, “Hydrothermal Synthesis of
Submicrometer α-Alumina from Seeded Tetraethylammonium Hydroxide
-Peptized Aluminum Hydroxide”, J. Am. Ceram. Soc., 86 [12], 2055-2058
(2003).
12. K. Kamiya, J. Yotani, R. Senba, J. Matsuoka and H. Nasu, “Sol-Gel
Preparation of Alumina Gels Forming α-Alumina around 500℃”, Journal
of the Ceramic Society of Japan, Int. Edition, Vol.104, No.7, pp. 685-687
(1996).
13. J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo, “Low temperature synthesis of
ultrafine α-Al2O3 powder by a simple aqueous sol-gel process”, Ceramics
International 32, 587-591 (2006).
14. P. C. Yu, R. J. Yang, Y. T. Chang, and F. S. Yen, “Fabrication of Nano-scaled
α-Al2O3 Crystallites through Heterogeneous Precipitation of Boehmite in a
Well-dispersed θ-Al2O3-suspension”, J. Am. Ceram. Soc. 90 [8] 2340-2346
(2007).
15. F. J. Ewing, “The Crystal Structure of Lepidocrocite”, J. Chem. Phys, 3,
420-454 (1935).
16. J. A. Kohn, G. Katz, and J.D. Broder, “β-Ga2O3 and Its Alumina Isomorph,
θ-Al2O3”, Am. Miner., 42, 398-408 (1957).
17. Y. M. Chiang, D. P. Birnie, III, and W. D. Kingery, Physical
Ceramics-Principles for Ceramic Science and Engineering, Wiley , New
York (1997).
18. F. W. DYNYS AND J. W. Halloran, “Alpha Alumina Formation in Alum
Derived Gamma Alumina”, J. Am. Ceram. Soc., 65 [9], 442-448 (1982).
19. J. L. McArdle and G. L. Messing, “Seeding with γ-Alumina for
Transformation and Microstructure Control in Boehmite-Derived
α-Alumina”, J. Am. Ceram. Soc., 69, C98-101 (1986).
20. 溫惠玲,由Boehmite 製得之氧化鋁粉末的θ→α-Al2O3 相轉換,國立成
功大學資源工程研究所,博士論文,中華民國 89 年 1 月。
21. H. L. Wen and F. S. Yen, “Growth Characteristics of Boehmite-DerivedUltrafine Theta and Alpha-Alumina Particles During Transformation”, J.
Cryst. Growth, 208 696-708 (2000).
22. P. L. Chang, F. S. Yen, K. C. Cheng, and H. L. Wen, “Examination on the
Critical and Primary Crystallite Sizes During θ- to α-Phase Transformation
on Ultrafine Alumina Powders”, Nano Letters, 5 253-261 (2001).
23. R. J. Hunter, “Introduction to Modern Colloid Science” (1993).
24. 高濂、孫靜、劉陽橋, 奈米粉體的分散及表面改性,五南圖書出版股份
有限公司,中華民國 94 年。
25. M. N. Rahaman, Ceramic Processing and Sintering, M. Dekker, New York,
(1995).
26. T. Seto, A. Hirota, T. Fujimoto, M. Shimado, and K. Okuyama, “Sintering
of Polydisperse Nanometer-Sized Agglomerates”, Aerosol Science and
Technology 27:422-438 (1997).
27. M. Shimada, T. Seto and K. Okuyama, “Size Change of very Fine Silver
Agglomerates by Sintering in a Heated Flow”, J. Chem. Eng. Jpn.
27:795-802 (1994).
28. S. N. Rogak, “Modeling Small Cluster Deposition on the Primary Particles
of Aerosol Agglomerate”, Aerosol Science and Technology 26:127-140
(1997).
29. B. Kindl, D. J. Carlsson, Y. Deslandes, and J. M. Hoddenbagh, “Preparation
of α-Alumina Ceramics: The Use of Boehmite Sols as Dispersing Agents”,
Ceram. Int., 17 347-350 (1991).
30. S. Anathakumar, V. Raja, and K. G. K. Warrier, “Effect of Nanoparticulate
Boehmite Sol as A Dispersant for Slurry Compaction of Alumina Ceramics”,
Mater. Lett., 43 174-179 (2000).
31. S. T. Kwon and G. L. Messing, “Constrained Densification in
Boehmite-Alumina Mixtures for the Fabrication of Porous Alumina
Ceramics”, J. Mater. Sci., 33 913-921 (1998).
32. 陳秀雯,利用Boehmite 分散及包覆θ-Al2O3 粉生產30-50nm α-Al2O3,
國立成功大學資源工程研究所,碩士論文,中華民國 93 年 6 月。33. 游佩青, 楊榮澤, 顏富士, “θ→α-Al2O3 相變系統中的晶種效應,” 第二屆
資源工程研討會, 2005.
34. 楊榮澤, 顏富士, 葉雅青, 陳秀雯, “Boehmite/θ-Al2O3系統之θ-到α-氧化
鋁相轉換過程之活化能研究,” 第二屆資源工程研討會, 2005.
35. F. S. Yen, J. L. Chang, and P. C. Yu, “Sintering Characteristics of
Theta-Alumina Powders during Alpha-Phase Transformation”, Journal of
Materials Science and Engineering, Vol. 34, No. 3, PP. 165-172 (2002).
36. R. J. Yang, F. S. Yen, S. M. Lin and C. C. Chen, “Microstructure-controlled
effects on temperature reduction of α-Al2O3 crystallite formation”, Journal
of Crystal Growth, 299, 429-435 (2007)