| 研究生: |
楊雨馨 Yang, Yu-Xin |
|---|---|
| 論文名稱: |
牛血清白蛋白對混合雙十六碳鏈離子對雙親分子/聚乙二醇修飾脂質之Langmuir單分子層行為的影響 Effects of bovine serum albumin on the Langmuir monolayer behavior of a mixed dihexadecyl-chain ion pair amphiphile/pegylated lipid system |
| 指導教授: |
張鑑祥
Chang, Chien-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 氣/液界面 、單分子層 、聚乙二醇修飾脂質 、牛血清白蛋白 |
| 外文關鍵詞: | air/liquid interface, Langmuir monolayer, poly (ethylene glycol)-lipids, plasma proteins |
| 相關次數: | 點閱:128 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Dipalmitoyl phosphatidylcholine(DPPC)為肺泡界面活性劑中降低肺泡內襯液層表面張力的主要成分,但因DPPC價格昂貴,所以本實驗利用結構與DPPC相似的hexadecyltrimethylammonium-hexadecylsulfate(HTMA-HS)進行單分子層實驗。結果顯示崩潰表面壓能達到72.0 mN/m,代表此時界面上的表面張力接近零。由上述結果推測HTMA-HS有取代DPPC作為肺泡界面活性劑之主要物質並用於治療呼吸窘迫症的潛力。但在牛血清白蛋白(bovine serum albumin, BSA)吸附分子層存在下於氣/液界分佈HTMA-HS單分子層,連續來回壓縮-擴張界面,發現HTMA-HS分子明顯損失,應是HTMA-HS分子容易隨albumin離開氣/液界面,使得HTMA-HS的動態界面活性受到抑制。
本研究以1,2-二棕櫚醯基-sn-甘油-3-磷酸乙醇胺-N-[(甲氧基)聚乙烯醇-550](DPPE-PEG550)做為添加劑,來改善HTMA-HS易與albumin作用而從氣/液界面上損失的情形。結果顯示隨DPPE-PEG550添加比率上升,DPPE接枝的親水性高分子PEG影響混合單分子層的排列造成表面較不平坦,使得在壓縮過程中混合分子更容易從界面上脫附,導致分子損失率上升。但不管添加1、3或10 mol%的DPPE-PEG550都無法有效減少HTMA-HS單分子層的損失率。比較HTMA-HS/DPPE-PEG550/albumin和文獻中HTMA-HS/DPPE-PEG1000/albumin、HTMA-HS/DPPE-PEG2000/albumin混合系統的結果,顯示當PEG鏈愈長時,albumin在擴張過程中愈不易再吸附到界面上,對albumin有愈大的排斥效應或產生愈顯著的立體障礙。但較長PEG鏈的溶解度較大,對混合單分子層的排列影響較大,使混合單分子層在壓縮過程中容易脫附,可是較不平坦的表面會使albumin不易再吸附到界面上,且當albumin靠近時,對其產生的排斥行為也愈顯著。由上述的結果可以歸納出DPPE-PEG對分子損失的影響因素有溶解度、對混合單分子層排列的影響,以及對蛋白質的排斥效應或產生的立體障礙。
In this study, the effects of bovine serum albumin (BSA) on the mixed Langmuir monolayer behavior of hexadecyltrimethylammonium-hexadecylsulfate (HTMA-HS) with dipalmitoyl phosphatidylethanolamine-polyethylene glycol 550 (DPPE-PEG550) was investigated by the Langmuir trough approach. Cyclic compression-expansion isotherms of the monolayers were examined to elucidate the induced removal characteristic of the molecules at the air/liquid interface. For mixed monolayers of HTMA-HS with adsorbed BSA at the cyclic interface, HTMA-HS would leave the interface with BSA during the interface compression stage, causing the loss of HTMA-HS at the interface. The presence of DPPE-PEG550 in the mixed monolayers would affect the monolayer structure. The PEG chains were helpful in preventing the readsorption of BSA during the interface expansion stage, which could be explained by the high degree of steric exclusion associated with the segmental flexibility of PEG chains.
Baoukina, S., L. Monticelli, H. J. Risselada, S. J. Marrink and D. P. Tieleman, “The molecular mechanism of lipid monolayer collapse,” Proceedings of the National Academy of Sciences of the United States of America, 105, 10803-10808, 2008.
Bartucci, R., M. Pantusa, D. Marsh and L. Sportelli, “Interaction of human serum albumin with membranes containing polymer-grafted lipids: spin-label ESR studies in the mushroom and brush regimes,” Biochimica et Biophysica Acta(BBA)- Biomembranes, 1564, 237-242, 2002.
Bourbon, J. R., “Pulmonary surfactant: biochemical, functional, regulatory, and clinical concepts,” CRC Press, 1991.
Brancato, S. and A. Serfis, “Incorporation of blood-clotting proteins into phospholipid Langmuir monolayers:a fluorescence microscopy study,” Journal of Colloid and Interface Science, 239, 139-144, 2001.
Cai, P., C. R. Flach and R. Mendelsohn, “An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)4K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids,” Biochemistry, 42, 9446-9452, 2003.
Chang, C.-H., S.-D. Yu, T.-K. Chuang and C.-N. Liang, “Roles of γ-globulin in the dynamic interfacial behavior of mixed dipalmitoyl phosphatidylcholine/γ-globulin monolayers at air/liquid interfaces,” Journal of Colloid and Interface Science, 227, 461-468, 2000.
Cheng, C. C. and C. H. Chang, “Retardation effect of tyloxapol on inactivation of dipalmitoyl phosphatidylcholine surface activity by albumin,” Langmuir, 16, 437-441, 2000.
Cho, D. and M. Cornec, “Adsorptive behavior of a globular protein with a monoglyceride monolayer spread on the aqueous surface,” Korean Journal of Chemical Engineering, 16, 371-376, 1999.
Clements, J. A., “Surface tension of lung extracts,” Experimental Biology and Medicine, 95, 170-172, 1957.
Creuwels, L., L. M. G. vanGolde and H. P. Haagsman, “The pulmonary surfactant system:biochemical and clinical aspects,” Lung, 175, 1-39, 1997.
Cruz, A., L.-A. Worthman, A. Serrano, C. Casals, K. Keough and J. Perez-Gil, “Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interfacial films spread from lipid-protein bilayers,” European Biophysics Journal, 29, 204-213, 2000.
Fuchimukai, T., T. Fujiwara, A. Takahashi and G. Enhorning, “Artificial pulmonary surfactant inhibited by proteins,” Journal of Applied Physiology, 62, 429-437, 1987.
Georgiev, G. A, C. Vassilieff, A. Jordanova. A. Tsanova and Z. Lalchev, “Foam film study of albumin inhibited lung surfactant preparations: effect of added hydrophilic polymers,” Soft Matter, 8, 12072-12079, 2012
Goerke, J., “Pulmonary surfactant:functions and molecular composition,” Biochimica et Biophysica Acta-Molecular Basis of Disease, 1408, 79-89, 1998.
Graham, D. and M. Phillips, “Proteins at liquid interfaces:II. adsorption isotherms,” Journal of Colloid and Interface Science, 70, 415-426, 1979.
Gunasekara, L., W. M. Schoel, S. Schurch and M. W. Amrein, “A comparative study of mechanisms of surfactant inhibition,” Biochimica et Biophysica Acta-Biomembranes, 1778, 433-444, 2008.
Hall, S. B., A. R. Venkitaraman, J. A. Whitsett, B. A. Holm and R. H. Notter, “Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants,” American Review of Respiratory Diease, 145, 24-30, 1992.
Hallman, M., T. A. Merritt, T. Akino and K. Bry, “Surfactant protein A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid: correlation with surface activity, severity of respiratory distress syndrome, and outcome in small premature infants,” American Review of Respiratory Disease, 144, 1376-1384, 1991.
Halperin, A., “Polymer brushes that resist adsorption of model proteins:design parameters,” Langmuir, 15, 2525-2533, 1999.
Harris, J. M., “Poly (ethylene glycol) chemistry:biotechnical and biomedical applications,” Springer Science & Business Media, 1992.
Holm, B., “Pulmonary Surfactant:from Molecular Biology to Clinical Practice,” Elsevier, 665-684, 1992.
Holm, B. A., G. Enhorning and R. H. Notter, “A biophysical mechanism by which plasma-proteins inhibit lung surfactant activity,” Chemistry and Physics of Lipids, 49, 49-55, 1988.
Holm, B. A., W. D. Wang and R. H. Notter, “Multiple mechanisms of lung surfactant inhibition,” Pediatric Research, 46, 85-93, 1999.
Jones, M. N. and D. Chapman, “Micelles, monolayers, and biomembranes,” Wiley, 1995.
Kajiyama, T. and M. Aizawa, “New developments in construction and functions of organic thin films,” Elsevier, 1996.
Keough, K. M. W., C. S. Parsons, P. T. Phang and M. G. Tweeddale, “Interactions between plasma-proteins and pulmonary surfactant-surface balance studies,” Canadian Journal of Physiology and Pharmacology, 66, 1166-1173, 1988.
Kuo, R. R., C. H. Chang, Y. M. Yang and J. R. Maa, “Induced removal of dipalmitoyl phosphatidylcholine by the exclusion of fibrinogen from compressed monolayers at air/liquid interfaces,” Journal of Colloid and Interface Science, 257, 108-115, 2003.
Leckband, D., S. Sheth and A. Halperin, “Grafted poly(ethylene oxide) brushes as nonfouling surface coatings,” Journal of Biomaterials Science, Polymer Edition 10, 1125-1147, 1999.
Lefevre, T. and M. Subirade, “Interaction of β-lactoglobulin with phospholipid bilayers:a molecular level elucidation as revealed by infrared spectroscopy,” International Journal of Biological Macromolecules, 28, 59-67, 2000.
Liu, Y.-L. and C.-H. Chang, “Inhibitory effects of fibrinogen on the dynamic tension-lowering activity of dipalmitoyl phosphatidylcholine dispersions in the presence of tyloxapol,” Colloid and Polymer Science, 280, 683-687, 2002.
Lu, J. R., T. J. Su and J. Penfold, “Adsorption of serum albumins at the air/water interface,” Langmuir, 15, 6975-6983, 1999.
MacRitchie, F., “Desorption of proteins from the air/water interface,” Journal of Colloid and Interface Science, 105, 119-123, 1985.
MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part I. The role of bulk diffusion in adsorption,” Journal of Colloid Science, 18, 453-457, 1963a.
MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part II. The role of pressure barriers in adsorption,” Journal of Colloid Science, 18, 458-463, 1963b.
MacRitchie, F. and A. Alexander, “Kinetics of adsorption of proteins at interfaces. Part III. The role of electrical barriers in adsorption,” Journal of Colloid Science, 18, 464-469, 1963c.
Magdassi, S., “Surface activity of proteins:chemical and physicochemical modifications,” CRC Press, 1996.
Maiti, K., S. C. Bhattacharya, S. P. Moulik and A. K. Panda, “Effect of bovine serum albumin on the functionality and structure of catanionic surfactant at air-buffer interface,” Materials Science and Engineering. C, Materials for Biological Applications, 33, 836-843, 2013.
Majewski, J., T. L. Kuhl, M. C. Gerstenberg, J. N. Israelachvili and G. S. Smith, “Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface,” The Journal of Physical Chemistry B, 101, 3122-3129, 1997.
McClellan, S. J. and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids and Surfaces B: Biointerfaces, 28, 63-75, 2003.
Miller, N. J., A. D. Postle, S. Orgeig, G. Koster and C. B. Daniels, “The composition of pulmonary surfactant from diving mammals,” Respiratory Physiology and Neurobiology, 152, 152-168, 2006.
Nag, K., J. G. Munro, K. Inchley, S. Schurch, N. O. Petersen and F. Possmayer, “SP-B refining of pulmonary surfactant phospholipid films,” American Journal of Physiology-Lung Cellular and Molecular Physiology, 277, L1179-L1189, 1999.
Nakahara, H., S. Lee, G. Sugihara, C.-H. Chang and O. Shibata, “Langmuir monolayer of artificial pulmonary surfactant mixtures with an Amphiphilic peptide at the Air/Water enterface:comparison of new preparations with surfacten (Surfactant TA),” Langmuir, 24, 3370-3379, 2008.
Notter, R. H., “Lung surfactants:basic science and clinical applications,” Marcel Dekker, 2000.
PastranaRios, B., S. Taneva, K. M. W. Keough, A. J. Mautone and R. Mendelsohn, “External reflection absorption infrared spectroscopy study of lung surfactant proteins SP-B and SP-C in phospholipid monolayers at the air/water interface,” Biophysical Journal, 69, 2531-2540, 1995.
Perez-Gil, J. and K. M. W. Keough, “Interfacial properties of surfactant proteins,” Biochimica et Biophysica Acta-Molecular Basis of Disease, 1408, 203-217, 1998.
Piknova, B., V. Schram and S. B. Hall, “Pulmonary surfactant:phase behavior and function,” Current Opinion in Structural Biology, 12, 487-494, 2002.
Rahmati, K., J. Koifman and V. Tsoukanova, “Two-step pattern in the kinetics of protein adsorption ontopoly(ethylene glycol)-grafted phospholipid monolayers,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 321, 181-188, 2008.
Serrano, A. G. and J. Perez-Gil, “Protein-lipid interactions and surface activity in the pulmonary surfactant system,” Chemistry and Physics of Lipids, 141, 105-118, 2006.
Szleifer, I. “Polymers and proteins:interactions at interfaces,” Current Opinion in Solid State and Materials Science, 2, 337-344, 1997.
Tabak, S. and R. Notter, “Effect of plasma proteins on the dynamic π-A characteristics of saturated phospholipid films,” Journal of Colloid and Interface Science, 59, 293-300, 1977.
Taneva, S. G. and K. M. Keough, “Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine,” Biochemistry, 33, 14660-14670, 1994.
Tripp, B. C., J. J. Magda and J. D. Andrade, “Adsorption of globular proteins at the air/water interface as measured via dynamic surface tension: concentration dependence, mass-transfer considerations, and adsorption kinetics,” Journal of Colloid and Interface Science, 173, 16-27, 1995.
van Aken, G. A. and M. T. Merks, “Adsorption of soluble proteins to dilating surfaces,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 114, 221-226, 1996.
Veldhuizen, E. J. A. and H. P. Haagsman, “Role of pulmonary surfactant components in surface film formation and dynamics,” Biochimica et Biophysica Acta-Biomembranes, 1467, 255-270, 2000.
Veldhuizen, R., K. Nag, S. Orgeig and F. Possmayer, “The role of lipids in pulmonary surfactant,” Biochimica et Biophysica Acta-Molecular Basis of Disease, 1408, 90-108, 1998.
von Nahmen, A., M. Schenk, M. Sieber and M. Amrein, “The structure of a model pulmonary surfactant as revealed by scanning force microscopy,” Biophysical journal, 72, 463-469, 1997.
Wang, Z. D., S. B. Hall and R. H. Notter, “Dynamic surface-activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids,” Journal of Lipid Research, 36, 1283-1293, 1995.
Warriner, H. E., J. Ding, A. J. Waring and J. A. Zasadzinski, “A concentration-dependent mechanism by which serum albumin inactivates replacement lung surfactants,” Biophysical Journal, 82, 835-842, 2002.
Wen, X. Y. and E. I. Franses, “Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 190, 319-332, 2001.
Wustneck, R., J. Perez-Gil, N. Wustneck, A. Cruz, V. B. Fainerman and U. Pison, “Interfacial properties of pulmonary surfactant layers,” Advances in Colloid and Interface Science, 117, 33-58, 2005.
Ybert, C., W. X. Lu, G. Moller and C. M. Knobler, “Collapse of a monolayer by three mechanisms,” Journal of Physical Chemistry B, 106, 2004-2008, 2002.
Yin, C.-L. and C.-H. Chang, “Infrared spectroscopy analysis of mixed DPPC/fibrinogen layer behavior at the air/liquid interface under a continuous compression-expansion condition,” Langmuir, 22, 6629-6634, 2006.
Zasadzinski, J. A., J. Ding, H. E. Warriner, F. Bringezu and A. J. Waring, “The physics and physiology of lung surfactants,” Current Opinion in Colloid and Interface Science, 6, 506-513, 2001.
Zhao, J., D. Vollhardt, G. Brezesinski, S. Siegel, J. Wu, J. B. Li and R. Miller, “Effect of protein penetration into phospholipid monolayers: morphology and structure,” Colloids and Surfaces A:Physicochemical and Engineering Aspects, 171, 175-184, 2000.
Zuo, Y. Y., R. A. W. Veldhuizen, A. W. Neumann, N. O. Petersen and F. Possmayer, “Current perspectives in pulmonary surfactant-inhibition, enhancement and evaluation,” Biochimica et Biophysica Acta-Biomembranes, 1778, 1947-1977, 2008.
詹宜潔, “牛血清白蛋白對雙十六碳鏈離子對雙親分子/親水性添加物混合系統之Langmuir單分子層行為的影響,” 國立成功大學化學工程學系碩士論文, 2016。
張庭瑜, “牛血漿白蛋白對雙十六碳鏈離子對雙親分子/界面活性添加物混合系統之Langmuir單分子層行為的影響,” 國立成功大學化學工程學系碩士論文, 2015。
陳宥廷, “牛血漿蛋白對dipalmitoyl phosphatidylcholine/雙十六碳鏈離子對雙親分子之混合Langmuir單分子層行為的影響,” 國立成功大學化學工程學系碩士論文, 2013。