簡易檢索 / 詳目顯示

研究生: 黃喻瑄
Huang, Yu-Hsuan
論文名稱: 奈米化白藜蘆醇透過抑制NLRP3發炎體活化作為酒精性肝臟疾病之潛在應用策略
Resveratrol-loaded nanoparticles suppress NLRP3 inflammasome activation for potential use in alcoholic liver disease
指導教授: 李宥萱
Lee, Yu-Hsuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 酒精性肝臟疾病NLRP3發炎體Galectin-3自噬作用奈米載體包覆白藜蘆醇奈米材料誘導的內皮細胞滲漏 (NanoEL)
外文關鍵詞: Alcoholic liver disease (ALD), NLRP3 inflammasome, galectin-3, autophagy, resveratrol-loaded nanoparticles, nanoparticle-induced endothelial leakiness (NanoEL)
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酗酒及慢性酒精攝取是全球公共衛生問題,酒精的過量攝取會造成酒精性肝臟疾病 (Alcoholic liver disease, ALD),然而,一些用於治療ALD的藥物具有許多副作用,最近已有研究指出白藜蘆醇可以改善酒精性肝臟損傷,但由於白藜蘆醇的生物可利用率差,阻礙了白藜蘆醇的巨大潛力,因此在本研究中欲將白藜蘆醇包覆於奈米載體來改善其生物可利用率,奈米載體的運輸系統可能可以作為一個有效改善藥物生物可利用率的方法,幫助藥物穿透至腦、肝和腎等器官。近幾年來有研究發現二氧化鈦奈米粒子可以透過誘導內皮細胞滲漏 (Nanoparticle-induced endothelial leakiness ,NanoEL),促進藥物的穿透及攝取。因此在本篇研究中,我們將嘗試把白藜蘆醇包覆於奈米載體後,改善白藜蘆醇之生物可利用率及攝取量,另外,我們想要探討酒精是否會透過上調galectin-3及抑制自噬作用去活化NLRP3發炎體,並且評估奈米載體包覆白藜蘆醇對酒精性肝臟損傷的保護作用機制。
    在動物實驗中,C57BL/6公鼠以酒精液態飼料進行實驗,收集血清及肝臟組織進行生化分析、組織染色、qPCR和western blotting。在細胞實驗中,本研究使用小鼠正常肝臟細胞 (AML-12) 及人類肝竇內皮細胞 (HHSEC) 進行試驗,以細胞存活率來探討酒精對其引起的損傷,並使用western blotting分析酒精性肝臟發炎機制中相關蛋白質的表現量,此外我們亦會探討nRes對於酒精誘導的脂肪累積和發炎之保護機制;而我們將另外以Fe3O4載體及nRes處理HHSEC,並以免疫螢光染色觀察NanoEL的現象。
    在餵食酒精液態飼料的小鼠血清中,其AST、ALT、及TCHO水平及肝臟中的TG含量顯著上升,由肝臟組織的H&E和masson trichrome染色結果圖可以看到顯著的脂肪變性及纖維化特徵,NLRP3發炎體及Galectin-3的蛋白表現量亦上升,證實在連續給予10週的酒精餵食後,老鼠的肝臟已經呈現酒精性肝炎的特徵。而給予奈米載體包覆白藜蘆醇後,有效地改善酒精造成的肝臟脂肪累積、發炎和纖維化。細胞實驗結果顯示,在酒精處理後,AML-12的細胞存活率顯著降低。我們將AML-12以不同濃度酒精處理24及48小時,結果顯示在處理24小時後,galectin-3、caspase-1和SREBP-1蛋白表現量隨著劑量上升而增加,且p62和LC3-II的蛋白表現量下降;另外在處理48小時後,NLRP3、ASC、caspase-1和SREBP-1的蛋白表現量隨著劑量增加而升高。另外,我們使用免疫螢光染色標記VE-cadherin以探討以Fe3O4載體處理的HHSEC是否會誘導NanoEL,結果顯示2 g/mL Fe3O4載體會誘導NanoEL現象,促進藥物穿透,並且可同時觀察到有包覆白藜蘆醇的Fe3O4載體 (6.5 g/mL nRes) 能有效回復因Fe3O4載體造成的NanoEL。
    綜合本研究結果,我們可以證實酒精會造成肝臟的脂肪累積、發炎及纖維化,並造成相關蛋白的表現量改變,例如galectin-3、NLRP3和TGF-等蛋白,同時亦證實了奈米載體包覆白藜蘆醇透過NanoEL現象可以改善其本身的生物可利用率,以增進對於酒精性肝臟脂肪累積、發炎及纖維化的治療效果,未來奈米載體包覆白藜蘆醇將可以做為具有潛力來治療酒精性肝臟疾病的治療策略。

    SUMMARY
    Alcohol abuse and chronic alcohol consumption remain as a global public health problem. The excessive intake of alcohol will cause alcoholic liver disease (ALD). ALD is a major cause of liver-related mortality not only in developed but also in developing countries. Currently, some drugs such as corticosteroids was used to treat ALD. Corticosteroids were main drugs to treat severe alcoholic hepatitis, but it can associate with some risk and side effects such as infection. In this study, we investigated the new mechanisms of ALD and developed resveratrol-loaded nanoparticles as a new therapeutic strategy. We used standard alcoholic liver disease model to conduct our experiments. Also, we used AML-12 cell and HHSEC to explore the detailed mechanisms. The results showed the protein expression of galectin-3, NLRP3 were induced by ethanol and the expression of autophagy-related protein were inhibited by ethanol. The mRNA expression of keratin-8 and keratin-18 which were related to alcoholic hepatitis were significantly induced by ethanol. Furthermore, resveratrol-loaded nanoparticles could reverse ethanol-induced steatosis, inflammation and fibrosis including mRNA levels and protein levels. Taken together, our findings demonstrated that ethanol would regulate galectin-3-autophagy-NLRP3 inflammasome pathway to cause lipid accumulation and inflammation. The new mechanisms may be a new target to treat ALD. Otherwise, the treatment of resveratrol-loaded nanoparticles also could rescue those ethanol-induced damages by inhibiting galectin-3-NLRP3 inflammasome pathway. In the future, resveratrol-loaded nanoparticles could be a potential drug to treat ALD.

    INTRODUCTION
    Alcohol abuse and chronic alcohol consumption remain as a global public health problem. Alcoholic liver disease (ALD) caused by the excessive intake of alcohol. According to the degree of damage is divided into alcoholic fatty liver, steatohepatitis, liver fibrosis and cirrhosis, with subsequent risk of hepatocellular carcinoma. However, some of drugs used to treat ALD possess many side effects. Recent studies have showed that resveratrol (Res) could ameliorate alcoholic liver injury. Nevertheless, resveratrol has poor bioavailability, which hinders its immense potential. Nano-sized delivery systems may provide satisfactory drug permeability into many organs such as brain, liver and kidney. Recently, Tee et al showed that TiO2 nanoparticles have the potential to modulate endothelial permeability and promote drug uptake by inducing nanoparticle-induced endothelial leakiness (NanoEL). Therefore, we attempt to used resveratrol-loaded nanoparticles (nRes) for improving the bioavailability and uptake of resveratrol. In this study, we investigate whether alcohol activates NLRP3 inflammasome by upregulating galectin-3 and suppressing autophagy and evaluate the protective mechanisms of nRes against ALD.
    MATERIALS AND METHODS
    In vivo study, C57BL/6 male mice were treated with ethanol liquid diet alone or combined with Res or nRes. We fed mice with control liquid diet or ethanol liquid diet for 10 weeks. From the seventh week, we treated Res and nRes twice a week in drug treatment groups. The liver tissues and serum were collected for biochemical analysis, histological staining, qPCR and western blotting. These results were used to investigate the mechanisms of alcoholic liver injury and the protective effect of nRes. In vitro study, normal mouse hepatocytes (AML-12 cells) and human hepatic sinusoidal endothelial cells (HHSECs) were used to mimic liver organ exposure. When AML-12 cells were stimulated with ethanol, we used cell viability assay to investigate the damage that caused by ethanol. Then, we applied western blotting to explore the related protein expressions of the alcoholic liver inflammation mechanisms such as galectin-3 and NLRP3 inflammasome-related pathway. We also explore the protective mechanisms of nRes against ethanol-induced lipid accumulation and inflammation. When HHSECs were treated with Fe3O4 carriers and nRes, we used immunofluorescence staining of VE-cadherin to observe the NanoEL.
    RESULTS AND DISCUSSION
    In vivo study, ethanol significantly increased the relative liver weights over the 10 weeks treatment period. In addition, the mice treated ethanol liquid diet also significantly elevated serum AST, ALT and TCHO levels and hepatic TG contents. H&E staining and masson trichrome of liver tissues showed that significant feature of steatosis and liver fibrosis. The expression of NLRP3 inflammasome and galectin-3 proteins in ethanol liquid diet group were higher than control liquid diet group. The results of immunohistochemistry staining also showed that the protein expressions of NLRP3, galectin-3 and TGF- were increased in ethanol liquid diet group. The mRNA expression of keratin-8 and keratin-18 which were related to alcoholic hepatitis were significantly induced by ethanol. Moreover, administration of nRes effectively improved the lipid accumulation, inflammation and fibrosis which caused by ethanol and downregulated the expression of galectin-3 and NLRP3 inflammasome and promoted autophagy. In vitro study, the cell viability of AML-12 cells significantly decreased after the treatment of ethanol in a dose-dependent manner. Then, AML-12 cells were treated with ethanol for 24 and 48h. The results of western blotting showed that the protein expression of galectin-3, caspase-1 and SREBP-1 were induced and the expression of autophagy-related protein such as p62 and LC3-II were inhibited by ethanol for 24h. Otherwise, the protein expression of NLRP3, ASC, caspase-1 and SREBP-1 were also induced by ethanol for 48h. Then, we applied immunofluorescence staining to detect VE-cadherin for observing the NanoEL which induced by Fe3O4 carriers. Fe3O4 carriers (2 g/mL) could induce NanoEL to promote drug permeability. Interestingly, Fe3O4 carriers which carried resveratrol (6.5 g/mL nRes) could reverse Fe3O4 carriers-induced NanoEL.
    CONCLUSION
    Our findings demonstrated that ethanol would cause hepatic lipid accumulation, inflammation and fibrosis. The inflammation and fibrosis-related protein such as galectin-3, NLRP3 and TGF- would also induce by ethanol. We also confirmed the protective effect of resveratrol loaded nanoparticles against hepatic lipid accumulation, inflammation and fibrosis of alcoholic liver disease through NanoEL induced by Fe3O4 carriers to promote drug permeability. In the future, resveratrol loaded nanoparticles could be a potential protective strategy to treat alcoholic liver disease.

    第一章、 序論 1 第二章、 文獻回顧 2 第一節、 酒精 (Alcohol) 及酒精性肝臟疾病 (Alcoholic liver diseases, ALD) 2 第二節、 透過Galectin-3 調控的NLRP3 發炎體活化 6 第三節、 自噬作用 (Autophagy) 8 第四節、 奈米材料誘導的內皮細胞滲漏 (Nanomaterials-induced endothelial leakiness, NanoEL) …………………………………………………………………………………….10 第五節、 治療策略 – 奈米載體包覆白藜蘆醇 (Resveratrol-loaded nanoparticles) 12 第三章、 研究目的 15 第四章、 研究材料與方法 16 第一節、 研究材料 16 (一) 細胞株 16 (二) 儀器 16 (三) 試劑與耗材 17 第二節、 研究方法與實驗步驟 21 (一) 奈米材料製備 21 (二) 細胞實驗 22 (三) 動物實驗 25 第五章、 研究架構 30 第六章、 研究結果 31 第一節、 奈米載體包覆白藜蘆醇之物理化學特性 31 第二節、 奈米載體包覆白藜蘆醇治療酒精誘導的肝臟脂肪變性及血清生化值變化 31 第三節、 奈米載體包覆白藜蘆醇治療酒精誘導的肝臟脂肪累積、發炎及纖維化 33 第四節、 奈米載體包覆白藜蘆醇抑制酒精性肝炎指標之基因表現量 34 第五節、 奈米載體包覆白藜蘆醇透過下調Galectin-3來減少NLRP3發炎體活化, 35 降低酒精誘導的發炎反應 35 第六節、 奈米載體包覆白藜蘆醇透過促進自噬作用 (Autophagy) 來抑制NLRP3 35 發炎活化,降低酒精誘導的發炎反應 35 第七節、 酒精、白藜蘆醇及奈米載體包覆白藜蘆醇對於小鼠正常肝臟細胞 (AML- 36 12) 造成的毒性影響 36 第八節、 Fe3O4 carrier誘導的NanoEL可以增加藥物的穿透 37 第七章、 討論 39 第八章、 結論與建議 45 第九章、 參考文獻 46 圖一、2015年每人 (15歲以上) 純酒精總攝取量 (WHO, 2016) 3 圖二、NLRP3發炎體之活化機制 (Shao et al. 2015) 7 圖三、自噬作用之過程 (Jing and Lim 2012) 8 圖四、自噬作用抑制NLRP3發炎體活化 (Saitoh and Akira 2016) 10 圖五、肝臟實質細胞與非實質細胞之相對位置 (Kang et al. 2013)。 12 圖六、白藜蘆醇結構 14 Figure 1. Characterization of Fe3O4 carriers and resveratrol-loaded nanoparticles (nRes). 59 Figure 2. The characteristics of hepatic injury and steatosis was improved after the treatment of nRes. 61 Figure 3. Resveratrol-loaded nanoparticles could significantly rescue the EtOH induced liver injury and hepatic lipid accumulation. 62 Figure 4. The mice gave EtOH liquid diet induced severe hepatic steatosis and fibrosis and were effectively ameliorated by nRes. 66 Figure 5. Resveratrol-loaded nanoparticles could rescue EtOH-induced mRNA expression. 67 Figure 6. Resveratrol-loaded nanoparticles could recover galectin-3-NLRP3 inflammasome pathway which induced by EtOH. 70 Figure 7. Resveratrol-loaded nanoparticles could reverse autophagy-related protein which inhibited by EtOH. 72 Figure 8. Effect of EtOH and resveratrol-loaded nanoparticles on cell viability. 73 Figure 9. EtOH could affect the expression of galectin-3-NLRP3 inflammasome pathway, autophagy and lipid accumulation-related protein for 24h and 48h on AML-12 cells. 74 Figure 10. Fe3O4 carriers and resveratrol-loaded nanoparticles did not cause cytotoxicity effects on HHSECs. 75 Figure 11. Resveratrol-loaded nanoparticles could reverse Fe3O4 carriers-induced NanoEL for 30 min and 6 h on HHSECs. 78 Table 1. The body weight (g) of all groups was steady growth during study period. 79 Table 2. The food consumption (mL) of per mouse in each group every two weeks. 80 Table 3. Primer sequences for real-time PCR. 81

    Abu-Elsaad NM, Elkashef WF. 2016. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells. Canadian journal of physiology and pharmacology 94:554-562.
    Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, et al. 2009. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Particle and fibre toxicology 6:1.
    Babuta M, Furi I, Bala S, Bukong TN, Lowe P, Catalano D, et al. 2019. Dysregulated autophagy and lysosome function are linked to exosome production via mir‐155 in alcoholic liver disease. Hepatology (Baltimore, Md).
    Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, et al. 1994a. Galectins: A family of animal beta-galactoside-binding lectins. Cell 76:597-598.
    Barondes SH, Cooper DN, Gitt MA, Leffler H. 1994b. Galectins. Structure and function of a large family of animal lectins. The Journal of biological chemistry 269:20807-20810.
    Braet F, Wisse E. 2002. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review. Comparative hepatology 1:1-1.
    Brenndorfer ED, Weiland M, Frelin L, Derk E, Ahlen G, Jiao J, et al. 2010. Anti-tumor necrosis factor alpha treatment promotes apoptosis and prevents liver regeneration in a transgenic mouse model of chronic hepatitis c. Hepatology (Baltimore, Md) 52:1553-1563.
    Bustos SO, da Silva Pereira GJ, de Freitas Saito R, Gil CD, Zanatta DB, Smaili SS, et al. 2018. Galectin-3 sensitized melanoma cell lines to vemurafenib (plx4032) induced cell death through prevention of autophagy. Oncotarget 9:14567-14579.
    Carletto B, Berton J, Ferreira TN, Dalmolin LF, Paludo KS, Mainardes RM, et al. 2016. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth. Colloids and surfaces B, Biointerfaces 144:65-72.
    Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, et al. 2016. Trims and galectins globally cooperate and trim16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Developmental cell 39:13-27.
    Chedid A, Arain S, Snyder A, Mathurin P, Capron F, Naveau S. 2004. The immunology of fibrogenesis in alcoholic liver disease. Archives of pathology & laboratory medicine 128:1230-1238.
    Chen X, Khambu B, Zhang H, Gao W, Li M, Chen X, et al. 2014. Autophagy induced by calcium phosphate precipitates targets damaged endosomes. The Journal of biological chemistry 289:11162-11174.
    Cheng CF, Pan TM. 2018. Monascus-fermented red mold dioscorea protects mice against alcohol-induced liver injury, whereas its metabolites ankaflavin and monascin regulate ethanol-induced peroxisome proliferator-activated receptor-gamma and sterol regulatory element-binding transcription factor-1 expression in hepg2 cells. Journal of the science of food and agriculture 98:1889-1898.
    Conte E, Fagone E, Fruciano M, Gili E, Iemmolo M, Vancheri C. 2015. Anti-inflammatory and antifibrotic effects of resveratrol in the lung. Histology and histopathology 30:523-529.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. 2015. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature cell biology 17:816-826.
    Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian A. 2016. Synthesis and application of amine functionalized iron oxide nanoparticles on menaquinone-7 fermentation: A step towards process intensification. Nanomaterials 6:1.
    Ellison RC. 2002. Balancing the risks and benefits of moderate drinking. Annals of the New York Academy of Sciences 957:1-6.
    Escudero CA, Herlitz K, Troncoso F, Acurio J, Aguayo C, Roberts JM, et al. 2016. Role of extracellular vesicles and micrornas on dysfunctional angiogenesis during preeclamptic pregnancies. Frontiers in physiology 7:98.
    Fan JG. 2013. Epidemiology of alcoholic and nonalcoholic fatty liver disease in china. Journal of gastroenterology and hepatology 28 Suppl 1:11-17.
    Gabele E, Dostert K, Dorn C, Patsenker E, Stickel F, Hellerbrand C. 2011. A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis. Alcoholism, clinical and experimental research 35:1361-1367.
    Gao B, Bataller R. 2011. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology 141:1572-1585.
    Goldberg DM, Yan J, Soleas GJ. 2003. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clinical biochemistry 36:79-87.
    Guccione C, Oufir M, Piazzini V, Eigenmann DE, Jahne EA, Zabela V, et al. 2017. Andrographolide-loaded nanoparticles for brain delivery: Formulation, characterisation and in vitro permeability using hcmec/d3 cell line. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV 119:253-263.
    Gupta AK, Gupta M. 2005. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1565-1573.
    Han C, Sun X, Liu L, Jiang H, Shen Y, Xu X, et al. 2016. Exosomes and their therapeutic potentials of stem cells. Stem cells international 2016:7653489.
    Han J, Bae J, Choi CY, Choi SP, Kang HS, Jo EK, et al. 2016. Autophagy induced by axl receptor tyrosine kinase alleviates acute liver injury via inhibition of nlrp3 inflammasome activation in mice. Autophagy 12:2326-2343.
    Han JY, Lee S, Yang JH, Kim S, Sim J, Kim MG, et al. 2015. Korean red ginseng attenuates ethanol-induced steatosis and oxidative stress via ampk/sirt1 activation. Journal of ginseng research 39:105-115.
    Hernandez-Gea V, Friedman SL. 2011. Pathogenesis of liver fibrosis. Annual review of pathology 6:425-456.
    Hirsova P, Ibrahim SH, Krishnan A, Verma VK, Bronk SF, Werneburg NW, et al. 2016. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150:956-967.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature 527:329-335.
    Hsu DK, Dowling CA, Jeng KC, Chen JT, Yang RY, Liu FT. 1999. Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. International journal of cancer 81:519-526.
    Jing K, Lim K. 2012. Why is autophagy important in human diseases? Experimental & Molecular Medicine 44:69-72.
    Jo EK, Kim JK, Shin DM, Sasakawa C. 2016. Molecular mechanisms regulating nlrp3 inflammasome activation. Cellular & molecular immunology 13:148-159.
    Johansen T, Lamark T. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279-296.
    Kang YB, Rawat S, Cirillo J, Bouchard M, Noh HM. 2013. Layered long-term co-culture of hepatocytes and endothelial cells on a transwell membrane: Toward engineering the liver sinusoid. Biofabrication 5:045008.
    Khan N, Syed DN, Ahmad N, Mukhtar H. 2013. Fisetin: A dietary antioxidant for health promotion. Antioxidants & redox signaling 19:151-162.
    Kim SH, Kim G, Han DH, Lee M, Kim I, Kim B, et al. 2017. Ezetimibe ameliorates steatohepatitis via amp activated protein kinase-tfeb-mediated activation of autophagy and nlrp3 inflammasome inhibition. Autophagy 13:1767-1781.
    Klionsky DJ, Emr SD. 2000. Autophagy as a regulated pathway of cellular degradation. Science (New York, NY) 290:1717-1721.
    Kuo YC, Chung CY. 2012. Transcytosis of crm197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids and surfaces B, Biointerfaces 91:242-249.
    Laurent S, Dutz S, Hafeli UO, Mahmoudi M. 2011. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science 166:8-23.
    Li LC, Li J, Gao J. 2014. Functions of galectin-3 and its role in fibrotic diseases. The Journal of pharmacology and experimental therapeutics 351:336-343.
    Lin YF, Lee YH, Hsu YH, Chen YJ, Lin YF, Cheng FY, et al. 2017. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine (London, England) 12:2741-2756.
    Liu S, Tian L, Chai G, Wen B, Wang B. 2018. Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting nlrp3 inflammasome activation. Food & function 9:4184-4193.
    Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, et al. 2010. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: Data from the deal-hf study. Clinical research in cardiology : official journal of the German Cardiac Society 99:323-328.
    Lopez-Andres N, Rossignol P, Iraqi W, Fay R, Nuee J, Ghio S, et al. 2012. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: Insights from the care-hf (cardiac resynchronization in heart failure) trial. European journal of heart failure 14:74-81.
    Louvet A, Mathurin P. 2015. Alcoholic liver disease: Mechanisms of injury and targeted treatment. Nature Reviews Gastroenterology &Amp; Hepatology 12:231.
    Lucey MR, Mathurin P, Morgan TR. 2009. Alcoholic hepatitis. The New England journal of medicine 360:2758-2769.
    Ma Z, Zhang Y, Li Q, Xu M, Bai J, Wu S. 2017. Resveratrol improves alcoholic fatty liver disease by downregulating hif-1alpha expression and mitochondrial ros production. PloS one 12:e0183426.
    Maji S, Matsuda A, Yan IK, Parasramka M, Patel T. 2017. Extracellular vesicles in liver diseases. American journal of physiology Gastrointestinal and liver physiology 312:G194-g200.
    Masarone M, Rosato V, Dallio M, Abenavoli L, Federico A, Loguercio C, et al. 2016. Epidemiology and natural history of alcoholic liver disease. Reviews on recent clinical trials 11:167-174.
    Miller M, Prinz G, Cheng S-F, Bounnak S. 2002. Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor. Applied Physics Letters 81:2211-2213.
    Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. 2005. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic materials 293:483-496.
    Nishi Y, Sano H, Kawashima T, Okada T, Kuroda T, Kikkawa K, et al. 2007. Role of galectin-3 in human pulmonary fibrosis. Allergology international : official journal of the Japanese Society of Allergology 56:57-65.
    Papadopoulos C, Meyer H. 2017. Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Current biology : CB 27:R1330-r1341.
    Pavillard LE, Canadas-Lozano D, Alcocer-Gomez E, Marin-Aguilar F, Pereira S, Robertson AAB, et al. 2017. Nlrp3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget 8:99740-99756.
    Penalva R, Morales J, Gonzalez-Navarro CJ, Larraneta E, Quincoces G, Penuelas I, et al. 2018. Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. International journal of molecular sciences 19.
    Peng F, Setyawati MI, Tee JK, Ding X, Wang J, Nga ME, et al. 2019. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nature nanotechnology 14:279-286.
    Polanco JC, Scicluna BJ, Hill AF, Gotz J. 2016. Extracellular vesicles isolated from the brains of rtg4510 mice seed tau protein aggregation in a threshold-dependent manner. The Journal of biological chemistry 291:12445-12466.
    Prasath GS, Subramanian SP. 2013. Fisetin, a tetra hydroxy flavone recuperates antioxidant status and protects hepatocellular ultrastructure from hyperglycemia mediated oxidative stress in streptozotocin induced experimental diabetes in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 59:249-255.
    Radike MJ, Stemmer KL, Bingham E. 1981. Effect of ethanol on vinyl chloride carcinogenesis. Environmental Health Perspectives 41:59-62.
    Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. 2017. Resveratrol as an anti-cancer agent: A review. Critical reviews in food science and nutrition:1-20.
    Roy HK, Gulizia JM, Karolski WJ, Ratashak A, Sorrell MF, Tuma D. 2002. Ethanol promotes intestinal tumorigenesis in the min mouse. Multiple intestinal neoplasia. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 11:1499-1502.
    Saberi B, Dadabhai AS, Jang YY, Gurakar A, Mezey E. 2016. Current management of alcoholic hepatitis and future therapies. Journal of clinical and translational hepatology 4:113-122.
    Saitoh T, Akira S. 2016. Regulation of inflammasomes by autophagy. The Journal of allergy and clinical immunology 138:28-36.
    Salminen A, Kaarniranta K, Kauppinen A. 2012. Inflammaging: Disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 4:166-175.
    Scott JR, Hassett AL, Schrepf AD, Brummett CM, Harris RE, Clauw DJ, et al. 2018. Moderate alcohol consumption is associated with reduced pain and fibromyalgia symptoms in chronic pain patients. Pain medicine (Malden, Mass).
    Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A, Lackner C, et al. 2018. Alcoholic liver disease. Nature Reviews Disease Primers 4:16.
    Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, et al. 2013a. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of ve-cadherin. Nature communications 4:1673.
    Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, et al. 2013b. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of ve–cadherin. Nature Communications 4:1673.
    Setyawati MI, Tay CY, Bay BH, Leong DT. 2017. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS nano 11:5020-5030.
    Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. 2015. Nlrp3 inflammasome and its inhibitors: A review. Frontiers in Pharmacology 6.
    Sheron N. 2016. Alcohol and liver disease in europe--simple measures have the potential to prevent tens of thousands of premature deaths. Journal of hepatology 64:957-967.
    Simovic Markovic B, Nikolic A, Gazdic M, Bojic S, Vucicevic L, Kosic M, et al. 2016. Galectin-3 plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of nlrp3 inflammasome and production of il-1beta in macrophages. Journal of Crohn's & colitis 10:593-606.
    Soleas GJ, Diamandis EP, Goldberg DM. 1997. Resveratrol: A molecule whose time has come? And gone? Clinical biochemistry 30:91-113.
    Soleas GJ, Angelini M, Grass L, Diamandis EP, Goldberg DM. 2001. Absorption of trans-resveratrol in rats. Methods in enzymology 335:145-154.
    Song RJ, Nguyen XT, Quaden R, Ho YL, Justice AC, Gagnon DR, et al. 2018. Alcohol consumption and risk of coronary artery disease (from the million veteran program). The American journal of cardiology 121:1162-1168.
    Summerlin N, Soo E, Thakur S, Qu Z, Jambhrunkar S, Popat A. 2015. Resveratrol nanoformulations: Challenges and opportunities. International journal of pharmaceutics 479:282-290.
    Sun Q, Zhang W, Zhong W, Sun X, Zhou Z. 2016. Dietary fisetin supplementation protects against alcohol-induced liver injury in mice. Alcoholism, clinical and experimental research 40:2076-2084.
    Tang L, Yang F, Fang Z, Hu C. 2016. Resveratrol ameliorates alcoholic fatty liver by inducing autophagy. The American journal of Chinese medicine 44:1207-1220.
    Tee JK, Ng LY, Koh HY, Leong DT, Ho HK. 2018. Titanium dioxide nanoparticles enhance leakiness and drug permeability in primary human hepatic sinusoidal endothelial cells. International journal of molecular sciences 20:35.
    Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, et al. 2019. Nanoparticles' interactions with vasculature in diseases. Chemical Society reviews 48:5381-5407.
    Thijssen VL, Heusschen R, Caers J, Griffioen AW. 2015. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochimica et biophysica acta 1855:235-247.
    Tian J, Yang G, Chen HY, Hsu DK, Tomilov A, Olson KA, et al. 2016. Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 30:4202-4213.
    Tian Y, Ma J, Wang W, Zhang L, Xu J, Wang K, et al. 2016. Resveratrol supplement inhibited the nf-kappab inflammation pathway through activating ampkalpha-sirt1 pathway in mice with fatty liver. Molecular and cellular biochemistry 422:75-84.
    Tilg H, Jalan R, Kaser A, Davies NA, Offner FA, Hodges SJ, et al. 2003. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. Journal of hepatology 38:419-425.
    Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, et al. 2016. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of cd40l containing extracellular vesicles. Journal of hepatology 64:651-660.
    von Klot CA, Kramer MW, Peters I, Hennenlotter J, Abbas M, Scherer R, et al. 2014. Galectin-1 and galectin-3 mrna expression in renal cell carcinoma. BMC clinical pathology 14:15.
    Wan T, Wang S, Ye M, Ling W, Yang L. 2017. Cyanidin-3-o-β-glucoside protects against liver fibrosis induced by alcohol via regulating energy homeostasis and ampk/autophagy signaling pathway. Journal of Functional Foods 37:16-24.
    Wieser V, Adolph TE, Enrich B, Kuliopulos A, Kaser A, Tilg H, et al. 2017. Reversal of murine alcoholic steatohepatitis by pepducin-based functional blockade of interleukin-8 receptors. Gut 66:930-938.
    Wong WY, Lee MM, Chan BD, Kam RK, Zhang G, Lu AP, et al. 2016. Proteomic profiling of dextran sulfate sodium induced acute ulcerative colitis mice serum exosomes and their immunomodulatory impact on macrophages. Proteomics 16:1131-1145.
    Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, et al. 2014. Nlrp3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology (Baltimore, Md) 59:898-910.
    Xia N, Daiber A, Förstermann U, Li H. 2017. Antioxidant effects of resveratrol in the cardiovascular system. British journal of pharmacology 174:1633-1646.
    Xu MJ, Cai Y, Wang H, Altamirano J, Chang B, Bertola A, et al. 2015. Fat-specific protein 27/cidec promotes development of alcoholic steatohepatitis in mice and humans. Gastroenterology 149:1030-1041.e1036.
    You M, Fischer M, Deeg MA, Crabb DW. 2002. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (srebp). The Journal of biological chemistry 277:29342-29347.
    Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, et al. 2013. Canonical nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell metabolism 18:519-532.
    Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, et al. 2013. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circulation Heart failure 6:107-117.
    Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, et al. 2007. From mallory to mallory-denk bodies: What, how and why? Experimental cell research 313:2033-2049.
    Zhang D, Zhang J, Zeng J, Li Z, Zuo H, Huang C, et al. 2019. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. Journal of biomedical nanotechnology 15:288-300.
    Zhang J, Zhang H, Deng X, Zhang Y, Xu K. 2017. Baicalin protects aml-12 cells from lipotoxicity via the suppression of er stress and txnip/nlrp3 inflammasome activation. Chemico-biological interactions 278:189-196.
    Zhu X, Ding M, Yu ML, Feng MX, Tan LJ, Zhao FK. 2010. Identification of galectin-7 as a potential biomarker for esophageal squamous cell carcinoma by proteomic analysis. BMC cancer 10:290.

    無法下載圖示 校內:2025-02-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE