| 研究生: |
廖宏奇 Liao, Hung-Chi |
|---|---|
| 論文名稱: |
表面改質對LiMn2O4陰極材料之充放電特性效應探討 Surface Modification on Charge-Discharge Capacity of LiMn2O4 Electrode Material |
| 指導教授: |
方滄澤
Fang, Tsang-Tse 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 表面改質 、鋰錳氧 |
| 外文關鍵詞: | surface modification, LiMn2O4 |
| 相關次數: | 點閱:64 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LiMn2O4具有價格低、能量密度高及低毒性等優點,成為最具潛力取代傳統應用於鋰離子二次電池中LiCoO2的正極材料。本實驗利用Pechini法合成LiMn2O4,可獲得初始放電電容量佳之粉末,而LiMn2O4在充放電循環時,具電容量衰退之問題,可利用表面改質方法來穩定粉末結構及性質。
利用Pechini合成法經連續爐熱處理之LiMn2O4粉末,其放電電容量偏低,配合後熱處理之LiMn2O4粉末(LMO800),其放電電容量有明顯提升,連續爐熱處理合成之LiMn2O4粉末,其初始放電電容量僅84mAh/g,經後熱處理,LMO800其初始放電電容量為124 mAh/g,經XRD及錳價數滴定分析,可知經後熱處理,LiMn2O4粉末其結晶度變佳,且錳平均價數接近理論值3.5,推論粉末初始放電電容量可能跟粉末結晶度及錳價數有關。
LMO800在55℃充放電循環測試時,其放電電容量明顯衰退,本實驗利用Pechini合成法將鋰鎳離子修飾在LMO800粉末表面上,經熱處理,可改善LMO800粉末在25℃及55℃下之充放電電容量衰退特性。LMO800粉末在25℃下進行充放電循環測試,經50cycles後,保有88%初始電容量;利用鋰鎳離子表面改質後,保有95%的初始電容量;而在55℃下進行充放電循環測試,經50cycles後,僅剩70%初始電容量;表面改質後,仍保有94%的初始電容量。利用ICP、XPS及EDS分析,可知表面改質後,粉末表面形成一層鋰鎳錳氧化物,隔離了粉末內部與電解液接觸,可有效抑制錳離子在電解液中析出。
Spinel phase LiMn2O4 has been considered to replace LiCoO2 cathode material for lithium-ion rechargeable batteres because of its lower cost, high energy density and lower toxicity. The purpose of this study is to enhance the capacity by using the Pechini process and decrease the capacity fading effectively by surface modification of LiMn2O4 cathode material.
Using Pechini process through the continuous stove heat treatment has been developed to synthesize LiMn2O4 powders. For the purpose to acquire completely LiMn2O4 powders, a post heat treatment should be performed. The powders (LMO800) with post heat treatment have superior discharge capacity. Through analyzing by XRD and manganese valence titration, it could be found that an increase in the crystallinity of the LiMn2O4 powders and manganese average valence of powders close to 3.5 after post heat treatment. The initial discharge capacity may be related to the crystallinity of the powders and manganese valence.
In this study, the surface of LiMn2O4 (LMO800) was covered with lithium nickel manganese oxide prepared by the Pechini process. After 50 cycles at 25℃, the bare LiMn2O4 showed 88% of the initial discharge capacity and surface-modified LiMn2O4 showed 95% of the initial discharge capacity. After 50 cycles at 55℃, the bare LiMn2O4 showed only 70% of the initial discharge capacity and surface-modified LiMn2O4 showed 94% of the initial discharge capacity. Thus, electrochemical performance of the LiMn2O4 can be improved by the surface modification with Li-Ni-ion. This action improves cyclability for lithium battery performance and reduces capacity fades of LiMn2O4 at elevated temperatures. Through analyzing by ICP, XPS and EDS, it can be explained by suppression of Mn dissolution in the electrolyte.
1. G. Pistoria, “Lithium Batteries: New Materials, Developments
and Perspectives”, Elsevier, Chap.1, (1994), pp. 3-10.
2. B. Scrosati, “Lithium Rocking Chair Batteries: An Old Concepts?”,
J.Electrochem. Soc., 139, (1992), pp. 2776-2780.
3. S. Megahed and B. Scrosati, “Lithium-ion Rechargeable Batteries”, J.Power
Sources, 51, (1994), pp. 79-104.
4. M. Winter, J. O. Besenhard, Michael E. Spahr and Petr Novák,“Insertion
Electrode Materials for Rechargeable Lithium Batteries”,Adv. Mater., 10,
(1998), pp. 725-763.
5. R. J. Gummow and M. M. Thackeray, “Lithium-Cobalt-Nickel-OxideCathode
Materials Prepared at 400℃ for Rechargeable LithiumBatteries”, Solid
State Ionics, 53, (1992), pp. 681-687.
6. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough,“LixCoO2
(0<x<1): A New Cathode Material for Batteries of HighEnergy Density”,
Mater. Res. Bull., 15, (1980), pp. 783-789.
7. L. D. Dyer, B. S. Borie and G. P. Smith, “Alkaki Metal-nickel Oxides of
the Type MNiO2”, J. Am. Chem. Soc., 78, (1954), pp. 1499-1503.
8. 林振華,林振富,〝充電式鋰離子電池材料與應用〞,第三章,民國90年1月,第3-8
頁。
9. 黃秋萍,〝鈷化合物表面修飾LiMn2O4陰極材料之研究〞,國立台灣科技大學化學工程
系碩士論文,民國90年6月。
10. J. C. Hunter, “Preparation of A New Crystal Form of Manganese Dioxide: λ-
MnO2”, J. Solid State Chem., 39, (1981), pp. 142-147.
11. M. M. Thackeray, P. J. Johnson, L. A. de Picciotto and J. B.Goodenough,
“Electrochemical Extraction of Lithium fromLiMn2O4”, Mater. Res.
Bull.,19, (1984), pp. 179-187.
12. 林志豪,〝鋁、鎳添加物對鋰離子電池陰極材料LiMn2O4電性及電化學性質之影響〞,
國立成功大學材料科學及工程學系碩士論文,民國92年6月。
13. W. Liu, G. C. Farrington, F. Chaput and B. Dunn, “Synthesis and
Electrochemical Studies of Spinel Phase LiMn2O4 Cathode Materials Prepared
by the Pechini Process”, J. Electrochem. Soc., 143, (1996),pp. 879-884.
14. W. Liu, K. Kowal and G.C. Farrington, “Electrochemical Characteristics of
Spinel Phase LiMn2O4-Based Cathode MaterialsPrepared by the Pechini
Process Influence of Firing Temperature andDopants”, J. Electrochem.
Soc., 143,(1996), pp. 3590-3596.
15. Y. S. Han and H. G. Kim, “Synthesis of LiMn2O4 by Modified Pechini Method
and Characterization as A Cathode for Rechargeable Li/LiMn2O4 Cells” J.
Power Sources, 88, (2000), pp. 161-168.
16. S. H. Hong, J. F. Young, P. Yu and R. J. Kirkpatrick, “Synthesis
of Anorthite by the Pechini Process and Structural Investigation of
the Hexagonal Phase”, J. Mater. Res.,14, (1999), pp. 1828-1833.
17. R. J. Gummow, A. de Kock, and M.M. Thackerat, “Improved Capacity
Retention in Rechargeable 4V Lithium/Lithium-ManganeseOxide (Spinel)
Cells”, Solid State Ionics, 69, (1994), pp. 59-67.
18. J. Cho and M. M. Thackeray, “Structure changes of LiMn2O4
spinelelectrodes during electrochemical cycling”, J. Electrochem. Soc.,
146, 10, (1999), pp. 3577-3581.
19. D. H. Jang, Y. J. Shin and S. M. Oh, “Dissolution of Spinel Oxidesand
Capacity Losses in 4 V Li/LixMn2O4 Cells”, J. Electrochem. Soc., 143,
(1996), pp. 2204-2211.
20. E. E. Yair, “A New Perspective on the Formation and Structure of the
Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells”,
Electrochem. Solid State Letters, 2, (1999), pp. 212-214.
21. Y. Gao and J. R. Dahn, ”Correlation Between the Growth of the
3.3V Discharge Plateau and Capacity Fading in Materials”, Solid
State Ionics, 84, (1996), pp. 33-40.
22. K. Tsuruta, H. Koshina, M. Kitagawa, T. Yonehara, M. Sugafji and Y.
Kashihara, Matsushita Tech. J., 44, (1998), pp. 407.
23. A. Du. Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B.Gerand
and J. M. Tarascon, “Mechanism for Limited 55℃ Storage Performance of
Li1.05Mn1.95O4 Electrodes “, J. Electrochem. Soc., 146, (1999), pp. 428-
436.
24. E. Rossen, C. D. W. Jones and J. R. Dahn, “Structure and Electrochemistry
of LixMnyNi1-yO2”, Solid State Ionics, 57, (1992),pp. 311-318.
25. J. A. Voigt, T. J. Boyle, D. H. Doughty, B. A. Henandez, B. J.Johnson, S.
C. Levy, C. J. Tafoya and M. Rosay, “Solution Synthesis and
Characterization of Lithium Manganese Oxide Cathode Materials”, Mat. Res.
Soc. Symp. Proc., 393, (1995), pp. 101-107.
26. M. Hosoya, H. Ikuta and M. Wakihara, “Single Phase Region ofCation
Substituted Spinel LiMyMn2-yO4-δ (M=Cr, Co and Ni) and Cathode Property
for Lithium Secondary Battery”, Solid State Ionics,111, (1998), pp. 153-
159.
27. H. Kawai, M. Nagata, H. Tukamoto and A. R. West, “A New Lithium Cathode
LiCoMnO4: Toward Practical 5V Lithium Batteries”, Electrochem. Solid
State Letters, 1, (1998), pp. 212-214.
28. Y. M. Todorov, Y. Hideshima, H. Noguchi and M. Yoshio,“Determination of
Theoretical Capacity of Metal Ion-Doped LiMn2O4 as the Positive Electrode
in Li-Ion Batteries”, J. PowerSources, 77, (1999), pp. 198-201.
29. G. X. Wang, D. H. Bradhurst, H. K. Liu and S. X. Dou,“Improvement of
Electrochemical Properties of the Spinel LiMn2O4 Using a Cr Doping
Effect”, Solid State Ionics, 120, pp. 95-101.(1999).
30. L. Gouhua, H. Ikuta, T. Uchida and M. Wakihara, “The Spinel Phase LiMyMn2-
yO4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries”,
J. Electrochem. Soc., 143, (1996), pp. 178-182.
31. J. M. Tarascon, F. Coowar, G. Amatucci, F. Shokoohi, and D.Guyomard, “The
System Materials and Electrochemical Aspects” J. Power Sources, 54,
(1995), pp. 103-108.
32. J. Cho and G. Kim, “Enhancement of thermal stability of LiCoO2by LiMn2O4
coating”, Electrochem. Solid State Letters, 2, (1999),pp. 253-255.
33. Zishan Zheng, Zilong Tang, Zhongtai Zhang, Wanci Shen and Yuanhua Lin,
“Surface modification of Li1.03Mn1.97O4 spinels for improved capacity
retention”, Solid State Ionics, 148, (2002), pp.317-321.
34. K. M. Shaju, G. V. Subba Rao and B. V. R. Chowdari, “Spinel Phases,
LiM1/6Mn11/6O4 (M=Co, CoAl, CoCr, CrAl), as Cathodesfor Lithium-Ion
Batteries”, Solid State Ionics, 148, (2002), pp.343-350.
35. W. Liu, K. Kowal and G. C. Farrington, “Electrochemical Characteristics
of Spinel Phase LiMn2O4-Based Cathode Materials Prepared by the Pechini
Process. Influence of Firing Temperatureand Dopants”, J. Electrochem.
Soc., 143, (1996), pp. 3590-3596.
36. 黃宣容,〝鋰離子電池材料LiMn2-xNixO4之合成與電化學特性之探討〞,國立中山大
學化學研究所博士論文,民國90年6月。