簡易檢索 / 詳目顯示

研究生: 廖宏奇
Liao, Hung-Chi
論文名稱: 表面改質對LiMn2O4陰極材料之充放電特性效應探討
Surface Modification on Charge-Discharge Capacity of LiMn2O4 Electrode Material
指導教授: 方滄澤
Fang, Tsang-Tse
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 59
中文關鍵詞: 表面改質鋰錳氧
外文關鍵詞: surface modification, LiMn2O4
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   LiMn2O4具有價格低、能量密度高及低毒性等優點,成為最具潛力取代傳統應用於鋰離子二次電池中LiCoO2的正極材料。本實驗利用Pechini法合成LiMn2O4,可獲得初始放電電容量佳之粉末,而LiMn2O4在充放電循環時,具電容量衰退之問題,可利用表面改質方法來穩定粉末結構及性質。

      利用Pechini合成法經連續爐熱處理之LiMn2O4粉末,其放電電容量偏低,配合後熱處理之LiMn2O4粉末(LMO800),其放電電容量有明顯提升,連續爐熱處理合成之LiMn2O4粉末,其初始放電電容量僅84mAh/g,經後熱處理,LMO800其初始放電電容量為124 mAh/g,經XRD及錳價數滴定分析,可知經後熱處理,LiMn2O4粉末其結晶度變佳,且錳平均價數接近理論值3.5,推論粉末初始放電電容量可能跟粉末結晶度及錳價數有關。

      LMO800在55℃充放電循環測試時,其放電電容量明顯衰退,本實驗利用Pechini合成法將鋰鎳離子修飾在LMO800粉末表面上,經熱處理,可改善LMO800粉末在25℃及55℃下之充放電電容量衰退特性。LMO800粉末在25℃下進行充放電循環測試,經50cycles後,保有88%初始電容量;利用鋰鎳離子表面改質後,保有95%的初始電容量;而在55℃下進行充放電循環測試,經50cycles後,僅剩70%初始電容量;表面改質後,仍保有94%的初始電容量。利用ICP、XPS及EDS分析,可知表面改質後,粉末表面形成一層鋰鎳錳氧化物,隔離了粉末內部與電解液接觸,可有效抑制錳離子在電解液中析出。

     Spinel phase LiMn2O4 has been considered to replace LiCoO2 cathode material for lithium-ion rechargeable batteres because of its lower cost, high energy density and lower toxicity. The purpose of this study is to enhance the capacity by using the Pechini process and decrease the capacity fading effectively by surface modification of LiMn2O4 cathode material.

     Using Pechini process through the continuous stove heat treatment has been developed to synthesize LiMn2O4 powders. For the purpose to acquire completely LiMn2O4 powders, a post heat treatment should be performed. The powders (LMO800) with post heat treatment have superior discharge capacity. Through analyzing by XRD and manganese valence titration, it could be found that an increase in the crystallinity of the LiMn2O4 powders and manganese average valence of powders close to 3.5 after post heat treatment. The initial discharge capacity may be related to the crystallinity of the powders and manganese valence.

     In this study, the surface of LiMn2O4 (LMO800) was covered with lithium nickel manganese oxide prepared by the Pechini process. After 50 cycles at 25℃, the bare LiMn2O4 showed 88% of the initial discharge capacity and surface-modified LiMn2O4 showed 95% of the initial discharge capacity. After 50 cycles at 55℃, the bare LiMn2O4 showed only 70% of the initial discharge capacity and surface-modified LiMn2O4 showed 94% of the initial discharge capacity. Thus, electrochemical performance of the LiMn2O4 can be improved by the surface modification with Li-Ni-ion. This action improves cyclability for lithium battery performance and reduces capacity fades of LiMn2O4 at elevated temperatures. Through analyzing by ICP, XPS and EDS, it can be explained by suppression of Mn dissolution in the electrolyte.

    中文摘要…………………………………………………………………I 英文摘要…………………………………………………………………II 誌謝………………………………………………………………………III 總目錄……………………………………………………………………IV 表目錄……………………………………………………………………VII 圖目錄……………………………………………………………………VIII 第一章 緒論…………………………………………………………….1 1-1 鋰離子電池簡介 ……………………………………………………1 1-2 研究目的…………………………………………………………….2 第二章 理論基礎與文獻回顧……………………………………………3 2-1 鋰離子二次電池及其工作原理…………………………………….3 2-2 鋰離子電池之陰極材料…………………………………………….3 2-2-1 LiCoO2系………………………………………………………….4 2-2-2 LiNiO2系………………………………………………………….4 2-2-3 LiMn2O4系…………………………………………………………5 2-3 LiMn2O4粉末之Pechini合成法…………………………………….5 2-4 LiMn2O4系陰極材料電容量衰退原因………………………………6 2-4-1 Jahn-Teller Distortion所造成之相變化…………………….6 2-4-2 活性物質溶解…………………………………………………….6 2-4-3 電解質液還原(electrolyte reduction)………………………7 2-4-4 鈍化膜(SEI, Solid Electrolyte Interface)……………….7 2-4-5 陰極過充電反應………………………………………………….7 2-5 陰極材料改質……………………………………………………….7 第三章 實驗步驟與方法…………………………………………………16 3-1 實驗用原料藥品及器材…………………………………………….16 3-2 陰極材料粉末之合成……………………………………………….16 3-2-1 LiMn2O4粉末之合成………………………………………………16 3-2-2 LiMn2O4粉末之表面改質…………………………………………16 3-3 陰極材料粉末分析………………………………………………….17 3-3-1 X光粉末繞射分析(XRD)………………………………………….17 3-3-2 感應耦合電漿質譜分析(ICP)……………………………………17 3-3-3 掃描式電子顯微鏡觀察(SEM)……………………………………17 3-3-4 穿透式電子顯微鏡觀察(TEM)……………………………………18 3-3-5 錳價數滴定分析………………………………………………….18 3-3-6 錳價數XPS分析……………………………………………………19 3-4 陰極之極片製作及電池組裝……………………………………….19 3-5 充放電測試………………………………………………………….20 3-5-1 不同導電劑添加量之充放電測試……………………………….20 3-5-2 不同陰極粉未之充放電測試…………………………………….20 第四章 實驗結果…………………………………………………………27 4-1 陰極粉末物理化學性質…………………………………………….27 4-2 導電劑(carbon black)添加量與陰極放電電容量關係………….28 4-3 陰極粉末表面改質後之物理化學性質…………………………….28 4-4 陰極粉末之充放電性質…………………………………………….29 4-5 陰極粉末之放電循環電容量性質………………………………….29 第五章 討論………………………………………………………………45 5-1 陰極粉末物理化學性質與充放電性質之關係…………………….45 5-2 LMO800粉末放電循環電容量性質………………………………….45 5-3 粉末表面改質後物理化學性質與充放電性質之關係…………….46 第六章 結論………………………………………………………………54 第七章 參考文獻…………………………………………………………55

    1. G. Pistoria, “Lithium Batteries: New Materials, Developments
    and Perspectives”, Elsevier, Chap.1, (1994), pp. 3-10.
    2. B. Scrosati, “Lithium Rocking Chair Batteries: An Old Concepts?”,
    J.Electrochem. Soc., 139, (1992), pp. 2776-2780.
    3. S. Megahed and B. Scrosati, “Lithium-ion Rechargeable Batteries”, J.Power
    Sources, 51, (1994), pp. 79-104.
    4. M. Winter, J. O. Besenhard, Michael E. Spahr and Petr Novák,“Insertion
    Electrode Materials for Rechargeable Lithium Batteries”,Adv. Mater., 10,
    (1998), pp. 725-763.
    5. R. J. Gummow and M. M. Thackeray, “Lithium-Cobalt-Nickel-OxideCathode
    Materials Prepared at 400℃ for Rechargeable LithiumBatteries”, Solid
    State Ionics, 53, (1992), pp. 681-687.
    6. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough,“LixCoO2
    (0<x<1): A New Cathode Material for Batteries of HighEnergy Density”,
    Mater. Res. Bull., 15, (1980), pp. 783-789.
    7. L. D. Dyer, B. S. Borie and G. P. Smith, “Alkaki Metal-nickel Oxides of
    the Type MNiO2”, J. Am. Chem. Soc., 78, (1954), pp. 1499-1503.
    8. 林振華,林振富,〝充電式鋰離子電池材料與應用〞,第三章,民國90年1月,第3-8
    頁。
    9. 黃秋萍,〝鈷化合物表面修飾LiMn2O4陰極材料之研究〞,國立台灣科技大學化學工程
    系碩士論文,民國90年6月。
    10. J. C. Hunter, “Preparation of A New Crystal Form of Manganese Dioxide: λ-
    MnO2”, J. Solid State Chem., 39, (1981), pp. 142-147.
    11. M. M. Thackeray, P. J. Johnson, L. A. de Picciotto and J. B.Goodenough,
    “Electrochemical Extraction of Lithium fromLiMn2O4”, Mater. Res.
    Bull.,19, (1984), pp. 179-187.
    12. 林志豪,〝鋁、鎳添加物對鋰離子電池陰極材料LiMn2O4電性及電化學性質之影響〞,
    國立成功大學材料科學及工程學系碩士論文,民國92年6月。
    13. W. Liu, G. C. Farrington, F. Chaput and B. Dunn, “Synthesis and
    Electrochemical Studies of Spinel Phase LiMn2O4 Cathode Materials Prepared
    by the Pechini Process”, J. Electrochem. Soc., 143, (1996),pp. 879-884.
    14. W. Liu, K. Kowal and G.C. Farrington, “Electrochemical Characteristics of
    Spinel Phase LiMn2O4-Based Cathode MaterialsPrepared by the Pechini
    Process Influence of Firing Temperature andDopants”, J. Electrochem.
    Soc., 143,(1996), pp. 3590-3596.
    15. Y. S. Han and H. G. Kim, “Synthesis of LiMn2O4 by Modified Pechini Method
    and Characterization as A Cathode for Rechargeable Li/LiMn2O4 Cells” J.
    Power Sources, 88, (2000), pp. 161-168.
    16. S. H. Hong, J. F. Young, P. Yu and R. J. Kirkpatrick, “Synthesis
    of Anorthite by the Pechini Process and Structural Investigation of
    the Hexagonal Phase”, J. Mater. Res.,14, (1999), pp. 1828-1833.
    17. R. J. Gummow, A. de Kock, and M.M. Thackerat, “Improved Capacity
    Retention in Rechargeable 4V Lithium/Lithium-ManganeseOxide (Spinel)
    Cells”, Solid State Ionics, 69, (1994), pp. 59-67.
    18. J. Cho and M. M. Thackeray, “Structure changes of LiMn2O4
    spinelelectrodes during electrochemical cycling”, J. Electrochem. Soc.,
    146, 10, (1999), pp. 3577-3581.
    19. D. H. Jang, Y. J. Shin and S. M. Oh, “Dissolution of Spinel Oxidesand
    Capacity Losses in 4 V Li/LixMn2O4 Cells”, J. Electrochem. Soc., 143,
    (1996), pp. 2204-2211.
    20. E. E. Yair, “A New Perspective on the Formation and Structure of the
    Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells”,
    Electrochem. Solid State Letters, 2, (1999), pp. 212-214.
    21. Y. Gao and J. R. Dahn, ”Correlation Between the Growth of the
    3.3V Discharge Plateau and Capacity Fading in Materials”, Solid
    State Ionics, 84, (1996), pp. 33-40.
    22. K. Tsuruta, H. Koshina, M. Kitagawa, T. Yonehara, M. Sugafji and Y.
    Kashihara, Matsushita Tech. J., 44, (1998), pp. 407.
    23. A. Du. Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B.Gerand
    and J. M. Tarascon, “Mechanism for Limited 55℃ Storage Performance of
    Li1.05Mn1.95O4 Electrodes “, J. Electrochem. Soc., 146, (1999), pp. 428-
    436.
    24. E. Rossen, C. D. W. Jones and J. R. Dahn, “Structure and Electrochemistry
    of LixMnyNi1-yO2”, Solid State Ionics, 57, (1992),pp. 311-318.
    25. J. A. Voigt, T. J. Boyle, D. H. Doughty, B. A. Henandez, B. J.Johnson, S.
    C. Levy, C. J. Tafoya and M. Rosay, “Solution Synthesis and
    Characterization of Lithium Manganese Oxide Cathode Materials”, Mat. Res.
    Soc. Symp. Proc., 393, (1995), pp. 101-107.
    26. M. Hosoya, H. Ikuta and M. Wakihara, “Single Phase Region ofCation
    Substituted Spinel LiMyMn2-yO4-δ (M=Cr, Co and Ni) and Cathode Property
    for Lithium Secondary Battery”, Solid State Ionics,111, (1998), pp. 153-
    159.
    27. H. Kawai, M. Nagata, H. Tukamoto and A. R. West, “A New Lithium Cathode
    LiCoMnO4: Toward Practical 5V Lithium Batteries”, Electrochem. Solid
    State Letters, 1, (1998), pp. 212-214.
    28. Y. M. Todorov, Y. Hideshima, H. Noguchi and M. Yoshio,“Determination of
    Theoretical Capacity of Metal Ion-Doped LiMn2O4 as the Positive Electrode
    in Li-Ion Batteries”, J. PowerSources, 77, (1999), pp. 198-201.
    29. G. X. Wang, D. H. Bradhurst, H. K. Liu and S. X. Dou,“Improvement of
    Electrochemical Properties of the Spinel LiMn2O4 Using a Cr Doping
    Effect”, Solid State Ionics, 120, pp. 95-101.(1999).
    30. L. Gouhua, H. Ikuta, T. Uchida and M. Wakihara, “The Spinel Phase LiMyMn2-
    yO4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries”,
    J. Electrochem. Soc., 143, (1996), pp. 178-182.
    31. J. M. Tarascon, F. Coowar, G. Amatucci, F. Shokoohi, and D.Guyomard, “The
    System Materials and Electrochemical Aspects” J. Power Sources, 54,
    (1995), pp. 103-108.
    32. J. Cho and G. Kim, “Enhancement of thermal stability of LiCoO2by LiMn2O4
    coating”, Electrochem. Solid State Letters, 2, (1999),pp. 253-255.
    33. Zishan Zheng, Zilong Tang, Zhongtai Zhang, Wanci Shen and Yuanhua Lin,
    “Surface modification of Li1.03Mn1.97O4 spinels for improved capacity
    retention”, Solid State Ionics, 148, (2002), pp.317-321.
    34. K. M. Shaju, G. V. Subba Rao and B. V. R. Chowdari, “Spinel Phases,
    LiM1/6Mn11/6O4 (M=Co, CoAl, CoCr, CrAl), as Cathodesfor Lithium-Ion
    Batteries”, Solid State Ionics, 148, (2002), pp.343-350.
    35. W. Liu, K. Kowal and G. C. Farrington, “Electrochemical Characteristics
    of Spinel Phase LiMn2O4-Based Cathode Materials Prepared by the Pechini
    Process. Influence of Firing Temperatureand Dopants”, J. Electrochem.
    Soc., 143, (1996), pp. 3590-3596.
    36. 黃宣容,〝鋰離子電池材料LiMn2-xNixO4之合成與電化學特性之探討〞,國立中山大
    學化學研究所博士論文,民國90年6月。

    下載圖示 校內:2006-07-11公開
    校外:2006-07-11公開
    QR CODE