簡易檢索 / 詳目顯示

研究生: 馮芳瑞
Fong, Fang-Jui
論文名稱: 奈米壓痕深度及加熱溫度對金矽薄膜共晶相形成之影響
Influences of Nano-Indentation Depth and Heating Temperature on the Formation of Gold-Silicon (Au/Si) Eutectic Phase
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 87
中文關鍵詞: 聚焦離子束顯微鏡奈米壓痕器金矽合金定位陣列
外文關鍵詞: Au/Si eutectic phase, Nano-indentation, Position array system, Focused ion beam microscope
相關次數: 點閱:148下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討奈米壓痕深度及加熱溫度對金矽薄膜微觀機械性質及薄膜界面金矽共晶相形成之影響。同時發展一可重覆、快速並有效率搜尋微小奈米壓痕之陣列定位關鍵技術,藉以準確確認壓痕之位置。實驗係利用半導體製程於(100)方向之矽晶圓上製作一500nm厚度之金薄膜;而每一矽晶圓內可規劃出49片相同薄膜厚度之晶片。經選取其中四個晶片,以奈米壓痕器分別進行300nm、500nm及1000nm深度之奈米壓痕試驗,以瞭解壓痕深度對微觀機械性質之影響。再將經奈米壓痕測試之晶片分別加熱至250℃、350℃及450℃,並持溫二分鐘,藉以比較未加熱及不同加熱條件下,其微觀組織之變化及薄膜界面金矽共晶相形成之特徵與機制。隨後,透過所發展之定位陣列技術再次定位出原有之奈米壓痕位置;並利用聚焦離子束顯微鏡切割出穿透式電子顯微鏡之觀測試片。微觀觀測結果顯示,金矽薄膜層之微觀結構及共晶相之形成受壓痕深度及加熱溫度之影響甚巨。在各加熱溫度及壓痕深度500nm以下,共晶相之形成並不顯著。然而在壓痕深度1000nm時,於室溫條件下出現鍊狀島狀結構相,同時金矽共晶相亦隨著加熱溫度之上升而顯著的增加。此結果亦說明奈米壓痕改變了薄膜與基材間之表面能量、內應力及原子排列,經外加溫度之作用,加速金、矽界面之原子擴散,形成金矽共晶相,進一步強化薄膜界面黏著之效果。

    This study investigates the effect of the indentation depth on the nano-mechanical properties of Au/Si thin films. The effects of the indentation depth and the heating temperature on the formation of Au/Si eutectic phase are also evaluated. Using semi-conductor deposition procedures and a conventional lithography etching technique, a thin gold film with a thickness of 500nm is grown on a (100) silicon wafer. Four chips of dimensions 1.2mm × 2.5mm are extracted from the wafer for nano-indentation testing. For each chip, indentation is performed to depths of 300nm, 500nm and 1000nm, respectively, in order to establish the effect of the indentation depth on the nano-mechanical properties of the Au/Si thin film. It is found that the load-displacement response, microhardness and Young’s modulus all vary with the nano-indentation depth. Following nano-indentation, the chips are heated to temperatures of 250℃, 350℃ and 450℃ for 2 min. The microstructural evolution and formation mechanisms of Au/Si eutectic phase are then determined as a function of the heating condition and the indentation depth. Using a proprietary position array system, the position of nano-indentation is accurately identified and TEM specimens are extracted using the focused ion beam microscope technique. Microstructural observations reveal that the nano-indentation depth and the heating temperature both have a significant effect on the microstructural features and eutectic phase formation of the Au/Si thin film. In the specimens with an indentation depth of 500nm, no eutectic phase is observed in the microstructure under any heating temperature. However, for the specimens with an indentation depth of 1000nm, a chain-like structure induced by shearing is observed at the interface between the Au thin film and the Si wafer at room temperature, while different eutectic phase morphologies are observed at different heating temperatures. The amount of eutectic phase is found to increase with the heating temperature. The microstructural observations indicate that nano-indentation causes a significant change in the surface energy, internal stress state and atomic arrangements of gold thin film and the silicon substrate. The applied heating effect activates atomic diffusion in the interface between the gold thin film and the silicon substrate, and this accelerates the formation of eutectic phase and results in, a high degree of interfacial adhesion.

    總目錄 中文摘要 I ABSTRACT II 誌謝 IV 總目錄 V 圖目錄 IX 第一章 前言 1 第二章 理論與文獻回顧 5 2-1 金矽合金性質介紹: 5 2-1-1金矽合金之形成機制 5 2-1-2晶圓接合之製程 5 2-1-3金矽合金之應用 8 2-1-4金矽合金之新製程 9 2-2聚焦離子束顯微技術(Focused ion beam microscope) 10 2-3以TEM觀察奈米壓痕下薄膜之彈塑性行為 12 2-4奈米壓痕理論 13 2-4-1薄膜機械性質之量測 13 2-4-2奈米壓痕估算模型 14 2-4-3影響薄膜量測之因素 16 2-4-3-1表面粗度(Surface roughness) 16 2-4-3-2基材效應(Substrate effect) 16 2-4-3-3尺寸效應(Indent size effect) 17 2-4-3-4基材與薄膜之複合反應 17 第三章 實驗方法與步驟 24 3-1實驗程序說明 24 3-1-1驗証光罩之參數 24 3-1-2奈米壓痕試驗 25 3-1-3聚焦離子束製備TEM試片 25 3-1-4以TEM觀察奈米壓痕之剖面形貌 25 3-2試片製備 26 3-2-1 蒸鍍材料之性質與製備 26 3-2-2 微影蝕刻製程(lithography etching process) 27 3-2-3奈米壓痕試驗與壓痕搜尋 28 3-3實驗儀器與設備 28 3-3-1電子束光罩製作系統(Electron beam lithography system, EBL) 28 3-3-2熱蒸鍍儀(Thermal evaporator) 29 3-3-3原子力顯微鏡與奈米壓痕(Nano-indentation) 30 3-3-4快速退火爐(Rapid thermal annealing processing system, RTA) 30 3-3-5聚焦離子束顯微鏡(Focused ion beam microscope, FIB) 31 3-3-6光學顯微鏡(Optical microscope, OM) 31 3-3-7掃瞄式電子顯微鏡(Scanning electron microscope, SEM) 32 3-3-8高解析穿透式電子顯微鏡(High resolution transmission electron microscope, HR-TEM) 32 3-4實驗方法與步驟 33 3-4-1奈米壓痕試驗 33 3-4-2試片表面定位陣列觀察 33 3-4-3穿透式電子顯微鏡 33 第四章 實驗結果與討論 41 4-1 薄膜機械性質之討論 41 4-1-1 壓痕深度與負載曲線之分析 41 4-1-2 壓痕深度與硬度曲線之分析 41 4-1-3 壓痕深度與楊氏模數曲線之分析 42 4-2 壓痕表面形貌之討論 42 4-2-1 壓痕深度1000nm,未加熱之壓痕表面形貌分析 42 4-2-2壓痕深度1000nm,經加熱之壓痕表面形貌分析 43 4-3 壓痕剖面形貌之討論 43 4-3-1 未經加熱之壓痕分析 44 4-3-1-1 500nm之奈米壓痕 44 4-3-1-2 1000nm之奈米壓痕 44 4-3-2壓深1000nm,加熱250℃持溫2分鐘之壓痕分析 46 4-3-3 壓深1000nm,加熱350℃持溫2分鐘之壓痕分析 46 4-3-4 加熱450℃持溫2分鐘之壓痕分析 48 4-3-4-1 500nm之奈米壓痕 48 4-3-4-2 1000nm之奈米壓痕 49 第五章 結論 79 文獻回顧 81

    [1] Y. T. Cheng and C. M. Cheng, “Scaling, dimensional analysis, and indentation measure”, Materials Science and Engineering R 44, PP.91-149, (2004).
    [2] http://www.ticgroup.com.tw 台灣儀器行股份有限公司
    [3] 丁志華, 管正平, 黃新言, 戴寶通, “奈米壓痕量測系統簡介”, 奈米通訊, 第九卷, 第三期, PP.4-10, (2002).
    [4] C. Anthony and C. Fische, “Contact Mechanics”, Nanoindentation, PP.1-19, (2001).
    [5] 施孟君, 何恕德, 林鶴南, 陳維釧, 吳信田, “基材效應對薄膜奈米壓痕量測之影響”, 2002年材料科學年會論文集, PL-39, (2002).
    [6] G. Patriarche, E. Le Bourhis, D. Faurie and P. O. Renault, “TEM study of the indentation behaviour of thin Au film on GaAs”, Thin Solid Films, V.460, PP.150-155, (2004).
    [7] A. A. Elmustafa and D. S. Stone, “Stacking fault energy and dynamic recovery: do they impact the indentation size effect”, Materials Science and Engineering A, V.358, N.1-2, PP.1-8, (2003).
    [8] S. Suresh, T. G. Nieh and B. W. Choi, “Nano-indentation of copper thin films on silicon substrates”, Scripta Materialia, V.41, N.9, PP.951-957, (1999).
    [9] C. F. Tsou, C. C. Hsu and W. L. Fang, “Interfaces friction effect of sliding contact on nanoindentation test”, Sensors and Actuators A, V.117, N.2, PP.309-316, (2005).
    [10] A. K. Sikder, I. M. Irfan, A. Kumar and J. M. Anthony, “Nano-Indentation Studies of Xerogel and SiLK Low-k Dielectric Materials”, Journal of Electronic Materials, V.30, N.12, PP.1527-1531, (2001).
    [11] M. Li and S. H. Wen, “Theoretical Methods on Nanoindentation”, Chinese Journal of Mechanical Engineering, V.39, V.3, PP.14-145, (2003).
    [12] Y. Kusano and I. M. Hutchings, “Analysis of nano-indentation measurements on carbon nitride films”, Surface and Coatings Technology, V.169-170, N.1, PP.739-742, (2003).
    [13] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, V.7, N.6, PP.1564-1583, (1992).
    [14] W. D. Nix, H. J. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity”, Journal of Materials Research, V.11, N.8, PP.744-425, (1996).
    [15] S. V. Hainsworth, H. W. Chandler and T. F. Page, “Analysis of nanoindentation load-displacement loading curves”, Journal of Materials Research, V.11, N.8, PP.1987-1995, (1996).
    [16] A. Jonathan and Zimmerman, “Materials science: Plastic Parameter”, Nature, V.418, N.6895, PP.285-286, (2002).
    [17] W. C. D. Cheng and L. C. Zhang, “Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation”, Nanotechnology, V.11, N.3, PP.178-180, (2000).
    [18] D. R. McKenzie, R. N. Tarrant, M. M. M. Bilek, T. Ha, J. Zou, W. E. McBride, D. J. H. Cockayne, N. Fujisawa, M. V. Swain, N. L. James, J. C. Woodard and D. G. McCulloch, “Multilayered carbon films for tribological applications”, Diamond and Related Materials, V.12, N.2, PP.178-184, (2003).
    [19] X. J. Zheng, Y. C. Zhou and J. Y. Li, “Nano-indentation fracture of Pb(Zr0.52Ti0.48)O3 ferroelectric thin films”, Acta Materialia, V.51, N.14, PP.3958-3997, (2003).
    [20] L. C. Chen, K. H. Chen, S. L. Wei, P. D. Kichambare, J. J. Wu, T. R. Lu and C. T. Kuo, “Crystalline SiCN: a hard material rivals to cubic BN”, Thin Solid Films, V.355-356, PP.112-116, (1999).
    [21] 張郁嫺, 何恕德, 林鶴南, “以導電性原子力顯微術觀察矽經奈米壓痕後之相變化行為”, 2003年材料科學年會論文集, PH-048 ( 2003).
    [22] B. D. Beake, S. P. Lau and J. F. Smith, “Evaluating the fracture properties and fatigue wear of tetrahedral amorphous carbon films on silicon by nano-impact testing”, Surface and Coating Technology, V.177-178, PP.611-615, (2004).
    [23] M. Tonosaki, H. Okita, Y. Takei, A. Chayahara, Y. Horino and N. Tsubouchi, “Nano-indentation testing for plasma-based ion-implanted surface of plastics”, Surface and Coatings Technology, V.136, PP.249-251, (2001).
    [24] H. Takatsuji, K. Haruta, S. Tsuji, K. Kuroda and H. Saka, “Pure Al thin film protective layer to prevent stress migration in Al wiring for thin-film transistors”, Surface and Coationg Technology, V.125, PP.167-172, (2002).
    [25] X. Q. Huang, A. Assimina and pelegri, “Nanoindentation Measurements on Low-k Porous Silica Thin Films Spin Coated on Silicon Substrates”, Journal of Engineering Materials and technology, V.125, N.4, PP.361-367, (2003).
    [26] 卓恩宗, 蔡增光, 楊家銘, 吳柏偉, 潘扶民, 趙桂蓉, “奈米孔洞二氧化矽超低介電薄膜的電漿鍛燒及改質”, 奈米通訊, 第九卷, 第四期, PP.26-32, (2002).
    [27] H. C. Barshilia and K. S. Rajam, “Characterization of Cu/Ni multiplayer coatings by nanoindentation and atomic force microscopy”, Surface and Coatings Technology, V.155, I.2-3, PP.195-202, (2002).
    [28] P. Mounaix, P. Delobelle, X. M`elique, L. Bornier and D. Lippens, ”Micromachining and mechanical properties of GaInAs/InP microcantilevers”, Material Science and Engineering, B51, N.1-3, PP.258-262, (1998).
    [29] J. H. Kim, S. C. Teon, Y. K. Jeon, J. G. Kim and Y. H. Kim, “Nano-indentation method for measurement of the Poisson’s ratio of MEMS thin films”, Sensors and Actuators A, V.108, N.1-3, PP.20-27, (2003).
    [30] Y. T. Cheng, L. W. Lin and N. Khalil, “Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging”, Journal of Microelectromechanical Systems, V.9, N.1, PP.3-8, (2000).
    [31] Moffatt, William G., “The handbook of binary phase diagrams,” Geniurn Publication, 3/84, (1990).
    [32] J. W. Jang, S. Hayes, J. K. Lin and D. R. Frear, “Interfacial reaction of eutectic AuSi solder with Si(100) and Si(111) surfaces”, Journal of Applied Physics, V.95, N.11, PP.6077-6081, (2004).
    [33] T. Adachi, “Eutectic reaction of gold thin-films deposited on silicon surface”, Surface Science, V.506, PP.305–312, (2002).
    [34] D. Thomas, M. H. Lee, I. M. Hsing and Y. N. Liaw, “An improved anodic bonding process using pulsed voltage technique”, Journal of Microelectromechanical Systems, V.9, N.4, PP.469-473, (2000).
    [35] U. Goesele and Q. Y. Tong, , “Semiconductor Wafer Bonding: Scienceand Technology”, John Wiley and Sons, (1999).
    [36] B. Bokhonov and M. Korchagin, “In situ investigation of stage of the formation of eutectic alloys in Si-Au and Si-Al systems”, Journal of Alloys and Compounds, V.312, N.1-2, PP.238-250, (2000).
    [37] W. P. Eaton, S. H. Risbud and R. L. Smith, “Silicon wafer-to-wafer bonding at T<200℃ with polymethylmethacrylate“, Applied Physics Letter, V.65, PP.439–441, (1994).
    [38] H. J. Quenzer and W. Benecke, “Low-temperature silicon wafer bonding“, Sensors Actuators A, V.32, PP.340–344, (1992).
    [39] S. Trigwell, “Die attach materials and methods”, Solid State Technology, V.38, N.4, PP.63-68, (1995).
    [40] S. P. Baker, Y. C. Joo, M. P. Knaub and E. Arzt, “Electromigration Damage In Mechanically Deformed Al Conductor Lines: Dislocations as Fast Diffusion Paths”, Acta Materialia, V.48, PP.2199-2208, (2000)
    [41] B. Satpatip, P. V. Satyam, T. Som and B. N. Dev, ”Nanoscale ion-beam mixing in Au–Si and Ag–Si eutectic systems”, Applied Physics A, V.79, I.3, PP.447–451 (2004).
    [42] J. Ghatak, B. Satpati, M. Umananda, D. Kabiraj, T. Som, B. N. Dev, K. Akimoto, K. Ito, T. Emoto and P. V. Satyam, “Characterization of ion beam induced nanostructures”, Nuclear Instruments and Methods in Physics Research Section B, V.244, PP.45-51, (2006).
    [43] B. Satpatip, P. V. Satyam, T. Som and B. N. Dev, “Ion-beam-induced embedded nanostructures and Nanoscale mixing”, Journal of Applied Physics, V.96, N.9, PP.5212-5216, (2004).
    [44] J. Ghatak, B. Satpati, M. Umananda, P. V. Satyam K. Akimoto, K. Ito and T. Emoto, “MeV ion-induced strain at nanoisland-semiconductor surface and interfaces”, Nuclear Instruments and Methods in Physics Research Section B, V.244, PP.64-68, (2006).
    [45] T. Tom, B. Satpati, P. V. Satyam, P. Ayyub and D. Kabiraj, “Swift heavy ion induced formation of preferentially oriented Au0.6Ge0.4 alloy”, Nuclear Instruments and Methods in Physics Research Section B, V.212, PP.151-156, (2003).
    [46] J. M. Cairney, P. R. Munroe and J. H. Schneibel, “Examination of fracture surfaces using focused ion beam milling”, Scripta Materialia, V.42, I.5, PP. 473-478, (2000).
    [47] R. Kometani, T. Morita, K. Watanabe, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. I. Fujita, M. Ishida, Y. Ochiai and S. Matsui, “Nanomanipulator and actuator fabrication on glass capillary by focused-ion-beam-chemical vapor deposition”, Journal of Vacuum Science B, V.22, I.1, PP.257-263, (2001).
    [48] C. Ochiai, O. Yavas, M. Takai, A. Hosons and S. Okuda, “Fabrication process of field emitter arrays using focused ion and electron beam induced reaction”, Journal of Vacuum Science & Technology B, V.19, I.3, PP. 933-935, (2001).
    [49] D. Petit, C. C. Faulkner, S. Johnstone, D. Wood and R. P. Cowburn, “Nanometer scale patterning using focused ion beam milling”, Review of scientific instruments, V76, PP.026105-1~026105-3, (2005).
    [50] J. Zhou, K. Komvopoulos and A. M. Minor, “Nanoscale plastic deformation and fracture of polymers studied by in situ nanoindentation in a transmission electron microscope”, Applied Physics letters, V.88, N.18, PP.l81908-1~-3, (2006).
    [51] A. M. Minor, J. W. Morris Jr. and E. A. Stach, “Quantitative in situ nanoindentation in an electron microscope”, Applied Physics Letters, V.79, N.11, PP.1625-1627, (2001).
    [52] A. M. Minor, E. T. Lilleodden, E. A. Stach and J. W. Morris Jr., “A method for extracting quantitative data during in-situ TEM nanoindentation”, Materials Research Society Symposium - Proceedings, V.695, PP.165-171, (2002).
    [53] Andreas Kailer, K. G. Nickel, Yury G. Gogotsi, “Raman microspectroscopy of nanocrystalline and amorphous phase in hardness indentations”, Journal of Raman Spectroscopy, V.30, PP.939-946, (1999).
    [54] M. Jin, A. M. Minor, D. Ge and J. W. Morris Jr., “Study of deformation behavior of ultrafine-grained materials through in situ nanoindentation in a transmission electron microscope”, Journal of Materials Research, V.20, N.7, (2005).
    [55] M. Jin, A. M. Minor, E. A. Stach and J. W. Morris Jr., “Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature”, Acta materialia, V.52, PP.5381-5387, (2004).
    [56] A. M. Minor, E. T. Lilleodden, M. Jin, E. A. Stach, D. C. Chrzan and J. W. Morris Jr., “Room temperature dislocation plasticity in silicon”, Philosophical Magazine, V.85, N.2-3, PP.323-330, (2005).
    [57] W. A. Soer, J. Th. M. De Hosson, A. M. Minor, J. W. Morris Jr. and E. A. Stach, “Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films”, Acta Materialia, V.52, N.20, PP.5783-5790, (2004).
    [58] J. Li, J. Krystyn, Van Vliet, T. Zhu, Y. Sidney and S. Suresh, “Atomistic mechanisms governing elastic limit and incipient plasticity in crystals”, Nature, V.418, N.6895, PP.307-310, (2002).
    [59] M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, Ph. Houdy and J. L. bozet, “Nanoindentation investigation of Ti/TiN multilayers films“, Journal of Applied Physics, V.87, N.11, PP. 7753-7757, (2000).
    [60] F. K. Mante, G. R. Baran and B. Lucas, “Nanoindentation studies of titanium single crystals”, Biomaterials, V.20, N.11, PP.1051-1055, (1999).
    [61] M. S. Bobji and S. K. Biswas, “Deconvolution of hardness from data obtained from nanoindentation of rough surfaces”, Journal of Materials Research, V.14, N.6, PP.2259-2268, (1999).
    [62] P. J. Burnett and T. F. Page, “Surface softening in silicon by ion implantation”, Journal of Materials Science, V.19, PP.845-860, (1984).
    [63] 陳力俊, “材料電子顯微鏡學“, 國科會精儀中心, (2002).
    [64] G. M. Pharr, W. C. Oliver and D. S. Harding,“New evidence for a pressure-induced phase transformation during the indentation of silicon“, Journal of Materials Research, V.6, N.6, P.1129, (1991).
    [65] A. Karimi, Y. Wang, T. Cselle and M. Morstein, “Fracture mechanisms in Nanoscale layered hard thin films”, Thin Solid Film, V.420/421, PP.275-280, (2002).
    [66] D. Beegan, S. Chowdhury and M. T. Laugier, “The nanoindentation behaviour of hard and soft films on silicon substrates”, Thin Solid Film, V.466, I.1-2, PP.167-174, (2004).
    [67] G. Daibin, V. Domnich and Y. Gogots, “Thermal stability of metastable silicon phases produced by nanoindentation”, Journal of Applied Physics, V.95, N.5, PP.2725-2731, (2004).
    [68] G. M. Pharr, W. C. Oliver and D. S. Harding, “Evidence for nanoindentation-induced phase transformations in germanium”, Applied Physics Letters, V.86, N.13, PP.131907-1~-3, (2005).
    [69] H. L. Gaigher and N. G. Van Der Berg, “ The structure of gold silicide in thin Au/Si films”, Thin Solid Films, N.68, I.2, PP.373-379, (1980).

    下載圖示 校內:2009-07-28公開
    校外:2009-07-28公開
    QR CODE