簡易檢索 / 詳目顯示

研究生: 洪佐旻
Hung, Tzuo-Min
論文名稱: 人工心臟混流泵之設計與分析
Design and Analysis of a Mixed-Flow Pump Used in Artificial Heart
指導教授: 陸鵬舉
Lu, Pong-Jeu
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 105
中文關鍵詞: 混流泵計算流體力學人工心臟
外文關鍵詞: Mixed-Flow Pump, Computational Fluid Dynamics(CFD), Artificial Heart
相關次數: 點閱:153下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

      電動液壓(Electro-Hydraulic)為目前成功大學發展之左心室輔助器(Left Ventricular Assist Device, LVAD)及全人工心臟(Total Artificial Heart, TAH)所採用的驅動方式。傳統舊式氣動(Pneumatic)系統龐大的驅動機構對病人術後生活造成相當大的負擔。此液壓系統將可有效縮小驅動裝置的體積,使病人獲得良好的行動能力與較佳的生活品質。為此,設計一個實用且具高效能的液壓泵便成為本裝置發展時相當重要的研究課題。本研究利用計算流體力學(Computational Fluid Dynamics, CFD)分析現有的混流式液壓泵(Mixed-flow Pump),分別計算其在直管流道與上下游均具曲面的彎管流道中之性能表現,並將其結果與測試台實驗結果進行比對,以供日後進行液壓泵設計及修正流道幾何形狀的參考依據。研究結果顯示,此一液壓泵在直流管道中的性能表現符合原設計要求,數值計算結果與實驗結果亦相當吻合。但其在曲面彎管流道中的性能表現則不如預期。此一現象乃導因於流體在經過入流彎管後,立即進入液壓泵進行加壓,且在加壓後便經由下游彎管流出。彎管的影響使得此泵於操作點上壓升損失達68.7mmHg,而效能的損失達17%。這些現象亦於測試台上獲得證實。綜而言之,此一液壓泵的確可達設計所需效能,然欲將其運用在本研究之LVAD或TAH上,則須針對此一特殊流道重新設計液壓泵。

    Abstract

      Electro-Hydraulic power is the driving mechanism adopted on the NCKU Left Ventricular Assist Device (LVAD) and Total Artificial Heart (TAH). The huge size of conventional pneumatic driving system would cause great inconvenience to the patients in post-surgical daily life. The development of this hydraulic system can significantly reduce the volume of the driver, and the patients can acquire good activity and better quality of life as well. For this purpose, a practical and highly effective hydraulic pump design is one of the most important tasks while developing the NCKU LAVD and TAH. Commercial-used Computational Fluid Dynamics (CFD) softwares are utilized here to analyze the performance of current mixed-flow pump. Two flow field conditions, running channels with straight pipe and curved-surface pipe upstream/downstream respectively, are considered in this research. Simulating results are compared to the experimental ones, and provide reference material to further hydraulic system design and geometric modification of the channel shape. The results show that the performance of this hydraulic pump in straight running channel conforms to the designed requirements, and the computational results correspond to the experimental ones as well. However, the pump performance in the curved-surface running channel is contrary to expectation in that the flow gets into the hydraulic pump and is pressurized immediately after passing the upstream curved pipe, and then flows out by the downstream curved pipe after being pressurizing. At operation point, the influence of curved-surface running channel cost pump by 68.7mmHg pressure lose and 17% efficiency loss. In all, this hydraulic pump can really achieve the required effect. Nevertheless, being put in the LVAD or TAH, the hydraulic pump has to be re-designed on the special running channel.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 序論 1 1-1前言 1 1-2人工心臟簡介 2 1-3 NCKU人工心臟 3 1-4研究目的與方法 4 第二章 數值方法 7 2-1統御方程式 7 2-2紊流模式 10 2-3壁面函數 11 2-4數值方法 13 2-4-1通量元素 14 2-4-2上風差分法 16 2-4-3壓力與速度的耦合 17 第三章 物理模型 19 3-1泵的設計 19 3-2初始葉形設計 21 3-2-1葉片入、出流角 22 3-3葉片網格建立 24 3-3-1格點獨立(Grid Independent) 25 3-4邊界條件 26 第四章 數值結果與討論 28 4-1數值實例 28 4-1-1數值收斂 29 4-2模型0、1與2 29 4-2-1數值結果與實驗值 29 4-2-2流場分析 31 4-3模型3 34 第五章 結論 43 參考文獻 45 圖 49 自述

    參考文獻

    [1] Smith, W. A., “Collected Nondimensional Performance of Rotary Dynamic Blood Pumps,” ASAIO Journal, Vol. 50, pp. 25-32, 2004.

    [2] Wu, Z J., “Investigation of Fluid Dynamics with a Miniature Mixed-Flow Blood Pump,” Experiments in Fluid, Vol. 31, pp. 615-629, 2001.

    [3] Elder, R. L., Tourlidakis, A. and Yates, M. K., “Advances of CFD in Fluid Machinery Design,” Professional Engineering Publishing, 2003.

    [4] Muggli, F. A., Holbein, Peter, and Dupont, P., “CFD Calculation of a Mixed Flow Pump Characteristics From Shutoff to Maximum Flow,” ASME Journal of Fluids Engineering, Vol. 124, pp.798-802, 2002.

    [5] Burgreen, G. W., Antaki, J. F., Wu, Z. J. and Holmes, A. J., “Computational Fluid Dynamics as a Development Tool for Rotary,” Artif. Organs, Vol. 25, No. 5, 2001.

    [6] Arcoumanis, C., Martinez-Botas, R. F., Nouri J. M., and Su, C. C., “Performance and Exit Flow Characteristics of Mixed-Flow Turbines,” Int. Journal of Rotating Machinery, Vol. 3, No. 4, pp. 277-293, 1997.

    [7] Lakshminarayana, B., “An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery-The 1990 Freeman Scholar Lecture,” ASME Journal of Fluids Engineering, Vol. 113, pp.315-352, 1991.

    [8] Lauder, B. E. and Spalding, D. B., ”The Numerical Computation of Turbulent Flows,” Comp. Meth. Appl. Eng.,Vol. 3, No. 2, pp.269-289,
    1974.

    [9] Ronel, J. and Baliga, B. R., ”A finite element method for unsteady heat conduction in materials with or without phase change,”ASME Paper, 79-WA-HT-54, 1979.

    [10] Schneider, G. E. and Raw, M. J., ”A Skewed, Positive Influence Coefficient Upwinding Procedure for Control-Volume-Based Finite Element Convection-Diffusion Computation,” Numerical Heat Transfer, Vol. 8, pp. 1-26, 1986.

    [11] Schneider, G. E. and Raw, M. J., “Control-Volume Finite Element Method for Heat Transfer and Fluid Flow Using Co-located Variables -- 1. Computational Procedure,” Numerical Heat Transfer, Vol. 11, pp. 363-390, 1987.

    [12] Huget, R. G., “The Evaluation and Development of Approximation Schemes for the Finite Volume Method,” University of Waterloo, Ph.D. Thesis, 1985.

    [13] Raw, M. J., “A New Control-Volume-Based Finite Element Procedure for the Numerical Solution of the Fluid Flow and Scalar Transport Equations,” Doctoral Thesis, University of Waterloo, Waterloo, Ontario, Canada, 1985

    [14] Raithby, G. D., “Skew Upstream Differencing Schemes for Problems Involving Fluid Flow,” Computer Methods in Applied Mechanics and Engineering, Vol. 9, pp. 153-164, 1976.

    [15] Rhie, C. M. and Chow, W. L., “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation,” AIAA Paper, 82-0998, 1982.

    [16] Patankar, S. V., ”Numerical Heat Transfer and Fluid Flow,” Series in Computational Methods in Mechanics and Thermal Sciences Hemisphere Publishing Corporation, 1980.

    [17] Prakash, C. and Patankar, S. V., ”A Control Volume-Based Finite-Element Method for Solving the Navier-Stokes Equations Using Equal-Ordervelocity-pressure interpolation,” Numerical Heat Transfer, Vol. 8, pp.259-280, 1985.

    [18] Lakshminarayana, B., ”Fluid Dynamics of Inducers-A Review,” ASME Journal of Fluids Engineering, Vol. 104, pp.411-427, 1985.

    [19] Boccazzi, A., Perdichizzi, A., and Tabacco U., “Flow Field Investigation in a Low-Solidity Inducer by Laser-Doppler Velocimetry,”ASME Journal of Turbomachinery, Vol. 112, pp. 91-97, 1990.

    [20] Howard, J. H. G., and Atif, A., “Near-Exit Flow Field Investigation in an Inducer Including Laser-Doppler Velocimetry,” Int. J. Heat and Fluid Flow, Vol. 14, No. 1, pp. 86-93, 1993.

    [21] Wright, Terry, Fluid Machinery: performance, analysis, and design, CRC PRESS, 1999

    [22] 陳世雄,流體機械,成大航太所課程講義,1997

    [23] Balje, O. E., Turbomachines, John Wiley and Sons, 1981

    [24] Cordier, O., ”Similarity Considerations in Turbomachines,” VDI Reports, Vol. 3, 1955.

    [25] J. P. Gostelow, Cascade Aerodynamics, pregamon press, 1984

    [26] Clifford M., “Engineers’ Guide to Rotating Equipment”, Professional Engineering Publishing, 1999

    [27] Howell, A. R. ,”Fluid Mechanics of Axial Flow Compressors,” Proc. Institute of Mechanical Engineers, Vol. 3, 1945

    [28] 黃建雄,”人工心臟液壓泵的性能測試”,成功大學航空太空工程研究所碩士論文,2000.

    [29] CFX-TASCflow Theory Documentation Version 2.12, AEA Technology Engineering Software Limited, 2002.

    [30] CFX-TASCflow User Documentation Version 2.12, AEA Technology Engineering Software Limited, 2002.

    [31] Denton, J. D., “Loss Mechanisms in Turbomachines,” ASME Journal of Turbomachinery, Vol. 115, pp.621-656, 1993.

    [32] Van Esch, B. P. M., and Kruyt, N. P., “Hydraulic Performance of a Mixed-Flow Pump: Unsteady Inviscid Computations and Loss Models,” ASME Journal of Fluids Engineering, Vol. 123, pp.256-264, 2001.

    [33] Oh, H. W., and Kim, K-Y., “Conceptual Design Optimization of Mixed-Flow Pump Impellers Using Mean Streamline Analysis,” IMechE, Vol. 215, Part A, pp. 133-138, 2001.

    [34] Yoon, E. S., Oh, H. W., Chung, M. K., and Ha, J. S., “Performance Prediction of Mixed-Flow Pumps,” IMechE, Vol. 212, Part A, pp. 109-115, 1998.

    [35] 施尚融,”葉頂間隙對壓縮機性能之影響”,成功大學航空太空工程研究所碩士論文,2003.

    [36] Ronald H. Aungier, “Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis,” ASME press, 2000.

    下載圖示 校內:立即公開
    校外:2004-08-25公開
    QR CODE