簡易檢索 / 詳目顯示

研究生: 張靖杰
Chang, Jing-Jie
論文名稱: 以三變量聯結函數評估降雨特性與水位對複合淹水的影響
Assessing the Compound Flooding under Joint Effects of Rainfall-Characteristics and River Stage
指導教授: 張駿暉
Jang, Jiun-Huei
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 151
中文關鍵詞: 氣候變遷複合淹水Copula模型蒙地卡羅取樣法非工程滯洪措施
外文關鍵詞: Climate Change, Compound Flooding, Copula, Monte Carlo, Runoff Distribution Strategies
相關次數: 點閱:21下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球氣候變遷的影響下,極端降雨及河川水位的發生日益頻繁,颱風與短延時強降雨常導致河川溪水暴漲,進而引發複合淹水災害。因此,如何建立具備統計可靠性與實務應用價值的淹水潛勢圖資,已成為當前重要的研究課題。
    本研究以筏子溪為示範區域,選用三變量Copula聯結函數建立總降雨量(R)、降雨總延時(D)及河川最大水位(W)之間的相依結構,並利用蒙地卡羅取樣法產製大量邊界條件組合,作為TELEMAC-2D模式的輸入條件,進行複合淹水模擬與風險量化。同時,為探討未來氣候變遷對於淹水風險的影響,選用台灣氣候變遷推估資訊與調適知識平台(TCCIP)提供之五種全球環流模式(GCM)於世紀末的網格化日雨量資料,推估三變量於未來的變化趨勢,並建構各GCM模式所對應的聯合機率模型。另於模式模擬中加入非工程滯洪措施,包括低衝擊開發設施(LID)與在地滯洪措施,評估逕流分擔策略對於減災效益的貢獻。
    研究結果顯示,Clayton Copula能夠良好描述降雨、延時與水位三個變量間的相依關係,將聯合機率模型所推估的聯合重現期與實際發生淹水的重現期進行比較後,顯示同時超過特定降雨、延時、水位門檻值的複合淹水事件重現期(AND重現期)會低估實際淹水風險,單一變量超越門檻值事件的重現期(OR重現期)則較為保守估計。複合淹水模擬結果則顯示,五種GCM模式中,平均淹水深度與淹水面積在各個模式中皆呈現增加趨勢,MIROC6的期望變化量最大,平均淹水深度增加9.77%,淹水面積則增加14.12%;僅MPI-ESM1-2-LR小幅減少,平均淹水深度的期望變化量減少3.62%;淹水面積平均減少5.78%。非工程滯洪設施之減災效益方面,整體可減少1%至3%的淹水面積,具備一定的減災潛力。
    綜上所述,本研究建立一套融合統計建模、氣候變遷情境推估與模式模擬的複合淹水風險評估流程,成果可作為未來都市區域防洪構造物規劃與防災策略擬定之參考依據。

    Under global climate change, extreme rainfall and river stage events have become more frequent, increasing the risk of compound flooding. Therefore, developing flood inundation mapping that are both statistically reliable and practically applicable has become an important research challenge. This study focuses on the Fazi River Basin and employs a trivariate Copula model to capture dependencies among rainfall(R), duration(D), and river stage(W). Monte Carlo sampling was used to generate boundary conditions for TELEMAC-2D simulations to quantify flood risk. To assess future flood risk under climate change, gridded daily rainfall data from five GCMs provided by TCCIP were used to rebuild joint probability models for each scenario. In addition, runoff distribution strategies, including Low Impact Development and flood retention measures, were integrated into the model to evaluate the effectiveness of runoff management strategies. The results show that the Clayton Copula best describes the relationship between the rainfall, duration, and river stage data. By comparing with the realistic flood risk, the AND-type joint return period tends to underestimate flood risk, while OR-type return period is more conservative. Simulation results show that, both average flood depth and flooded area tend to increase in the future. MIROC6 shows the highest increase, expected change in average flood depth increases 9.77% and flooded area increases 14.12%. Only MPI-ESM1-2-LR shows decrease, with flood depth down 3.62% and area down 5.78%. Meanwhile, applying runoff distribution strategies reduces flooded area by 1% to 3%, demonstrating their potential for flood reduction. In summary, this study establishes a compound flood risk assessment framework that combines statistical modeling, climate change scenarios, and flood simulations. The results can serve as a reference for urban flood protection structure design and disaster mitigation strategy development in the future.

    摘要 I 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 複合淹水 2 1.2.2 聯結函數應用於淹水風險評估 3 1.2.3 氣候變遷情境 5 1.3 研究架構 7 第二章 研究區域與資料 8 2.1 研究區域概述 8 2.2 地形資料 10 2.3 土地利用 11 2.4 水文資料 16 2.4.1 降雨事件切割 18 2.4.2 COS-Flow補遺水位 18 2.4.3 現況之降雨、延時、水位資料 22 2.5 氣候變遷情境 24 第三章 研究方法 29 3.1 複合淹水模式建模 31 3.1.1 SMS水理演算軟體 31 3.1.2 TELEMAC-2D淹水模式 31 3.1.3 邊界條件建置流程 33 3.1.4 模式驗證 35 3.2 聯結函數 36 3.2.1 聯結函數定理 36 3.2.2 水文常用之聯結函數 38 3.2.3 聯結函數參數推估 41 3.2.4 適合度檢定 43 3.2.5 最佳機率函數選取原則 46 3.3 不同全球環流模式變化比例之推估 47 3.3.1 降雨、延時變化比例之推估 48 3.3.2 河川水位變化比例之推估 49 3.4 產製複合淹水事件 51 3.4.1 蒙地卡羅取樣 51 3.4.2 降雨、河川水位之設計歷線 52 3.5 在地滯洪及低衝擊開發設施建置 54 3.6 淹水風險評估 57 3.6.1 淹水風險評估指標計算 57 3.6.2 三變量聯合重現期 59 3.6.3 實際淹水重現期 60 第四章 結果與討論 62 4.1 模式驗證 62 4.2 變化比例之推估 64 4.3 歷史現況及世紀末單變量最佳邊際分布選取 75 4.4 歷史現況及世紀末最佳聯結函數選取 88 4.5 蒙地卡羅取樣結果 93 4.6 三維聯合重現期等值曲面 102 4.7 氣候變遷情境聯合重現期等值線變化 108 4.8 氣候變遷情境平均淹水深度與淹水面積變化 111 4.9 非工程滯洪策略之減災效益 115 第五章 結論與建議 122 5.1 結論 122 5.2 建議 124 參考文獻 126

    Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water.
    Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S., Ramos, A. M., Vignotto, E., Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., Van Der Wiel, K., Wu, W., Zhang, T., & Zscheischler, J. (2021b). Guidelines for studying diverse types of compound weather and climate events. Earth S Future, 9(11).
    Bibi, T. S., Kara, K. G., Bedada, H. J., & Bededa, R. D. (2023. Application of PCSWMM for assessing the impacts of urbanization and climate changes on the efficiency of stormwater drainage systems in managing urban flooding in Robe town, Ethiopia. Journal of Hydrology Regional Studies, 45, 101291.
    Burnham, K. P. and D. R. Anderson (2004). "Multimodel Inference." Sociological Methods & Research 33(2): 261-304.
    Chen, J., Brissette, F. P., Poulin, A., & Leconte, R. (2011). Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resources Research, 47(12).
    Chiappa, J., Parsons, D. B., Furtado, J. C., & Shapiro, A. (2024). Short‐Duration extreme rainfall events in the central and eastern United States during the summer: 2003–2023 Trends and variability. Geophysical Research Letters, 51(17).
    Chow, V. T. (1951). A general formula for hydrologic frequency analysis. Transactions American Geophysical Union, 32(2), 231–237.
    Dupuis, D. J. (2007). Using Copulas in Hydrology: Benefits, cautions, and issues. Journal of Hydrologic Engineering, 12(4), 381–393.
    Fereshtehpour, M., Najafi, M. R., & Cannon, A. J. (2025). Characterizing compound inland flooding mechanisms and risks in North America under climate change. Earth S Future, 13(2).
    Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schaer, C., Sharma, A., Villarini, G., Wasko, C., & Zhang, X. B. (2021). Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2(2), 107-122.
    Gao, L., Mei, J., Li, J., Zhang, W., & Lai, C. (2023). Effect of intense rainfall and high riverine water level on compound flood hazards in a river-valley city: A case study of Yingde, China. Journal of Hydrology, 625, 130044.
    Gräler, B., Van Den Berg, M. J., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., & Verhoest, N. E. C. (2013). Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17(4), 1281–1296.
    Hao, Z., & Singh, V. P. (2016). Review of dependence modeling in hydrology and water resources. Progress in Physical Geography Earth and Environment, 40(4), 549–578.
    He, Y., Wang, Q., Xu, Y., Li, Z., Yuan, J., Lu, M., & Lin, Z. (2022). Climate change increased the compound extreme precipitation-flood events in a representative watershed of the Yangtze River Delta, China. Stochastic Environmental Research and Risk Assessment, 36(11), 3803–3818.
    Heinrich, P., Hagemann, S., Weisse, R., & Gaslikova, L. (2023). Changes in compound flood event frequency in northern and central Europe under climate change. Frontiers in Climate, 5.
    Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816–821.
    Jafry, N. A., Suhaila, J., Yusof, F., Nor, S. R. M., & Alias, N. E. (2024). Enhancing flood risk assessment in the Johor River Basin through trivariate copula. Journal of Water and Climate Change, 15(4), 1820–1839.
    Jasmina L. Vujic .Monte Carlo Sampling Methods. Nuclear Engineering Department University of California, Berkeley
    Jang, J. H., & Chang, T. H. (2022). Flood risk estimation under the compound influence of rainfall and tide [Article]. Journal of Hydrology, 606, 11, Article 127446.
    Karahacane, H., Meddi, M., Chebana, F., & Saaed, H. A. (2020). Complete multivariate flood frequency analysis, applied to northern Algeria. Journal of Flood Risk Management, 13(4).
    Klaho, M. H., Safavi, H. R., Golmohammadi, M. H., & Alkntar, M. (2022). Comparison between bivariate and trivariate flood frequency analysis using the Archimedean copula functions, a case study of the Karun River in Iran. Natural Hazards, 112(2), 1589–1610.
    Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., Oki, T., Şen, Z., & Shiklomanov, I. (2008). The implications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal, 53(1), 3–10.
    Latif, S., & Simonovic, S. P. (2023). Compounding joint impact of rainfall, storm surge and river discharge on coastal flood risk: an approach based on 3D fully nested Archimedean copulas. Environmental Earth Sciences, 82(2).
    Li, W., Wang, C., Mo, J., Hou, S., Dang, X., Shi, H., & Gong, Y. (2025). Compound flood risk assessment of extreme rainfall and high river water level. Water, 17(6), 841.
    Löschner, L., Herrnegger, M., Apperl, B., Senoner, T., Seher, W., & Nachtnebel, H. P. (2017) Flood risk, climate change and settlement development: a micro-scale assessment of Austrian municipalities. Regional Environmental Change, 17(2), 311–322.
    Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517.
    Naseri, K., & Hummel, M. A. (2022). A Bayesian copula-based nonstationary framework for compound flood risk assessment along US coastlines. Journal of Hydrology, 610, 128005.
    Peng, Y., Chen, K., Yan, H., & Yu, X. (2017). Improving Flood-Risk Analysis for confluence flooding control downstream using Copula Monte Carlo method. Journal of Hydrologic Engineering, 22(8).
    Quagliolo, C., Comino, E., & Pezzoli, A. (2021). Experimental Flash Floods Assessment Through Urban Flood Risk Mitigation (UFRM) Model: The Case Study of Ligurian Coastal Cities. Frontiers in Water, 3.
    Salvadori, G., & De Michele, C. (2004). Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resources Research, 40(12).
    Santiago-Collazo, F. L., Bilskie, M. V., Bacopoulos, P., & Hagen, S. C. (2021). An examination of compound flood hazard zones for past, present, and future Low-Gradient Coastal Land-Margins. Frontiers in Climate, 3.
    Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. In Annales de l'ISUP (Vol. 8, No. 3, pp. 229-231).
    Torelló‐Sentelles, H., Marra, F., Koukoula, M., Villarini, G., & Peleg, N. (2024). Intensification and changing spatial extent of heavy rainfall in urban areas. Earth S Future, 12(9).
    Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123–138.
    Wang, X., Xia, J., Zhou, M., Deng, S., & Li, Q. (2022). Assessment of the joint impact of rainfall and river water level on urban flooding in Wuhan City, China. Journal of Hydrology, 613, 128419.
    Wasko, C., & Sharma, A. (2015). Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nature Geoscience, 8(7), 527–529.
    Weiß, G. (2010). Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study. Computational Statistics, 26(1), 31–54.
    Xue, W., Wu, Z., Xu, H., Wang, H., Ma, C., & Zhou, Y. (2024). A framework for amplification flood risk assessment and threshold determination of combined rainfall and river level in an inland city. Journal of Hydrology, 640, 131725.
    Yang, X., & Qian, J. (2019). Joint occurrence probability analysis of typhoon-induced storm surges and rainstorms using trivariate Archimedean copulas. Ocean Engineering, 171, 533–539.
    Zhang, L., & Singh, V. P. (2007). Gumbel–Hougaard Copula for trivariate rainfall frequency analysis. Journal of Hydrologic Engineering, 12(4), 409–419.
    Zhu, Z., Zhang, W., & Zhu, W. (2024). Compound impact of storm surge and flood characteristics in coastal area based on Copula. Water, 16(2), 270.
    Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., & Zhang, X. (2018). Future climate risk from compound events. Nature Climate Change, 8(6), 469–477.
    吳彥摩 (2024),「應用SWMM模擬氣候變遷下擬二維複合淹水之影響」,國立成功大學水利工程研究所碩士論文
    林俊豪 (2023),「以三變量聯結函數 探討雨量、潮位、流量對海岸複合淹水風險之影響」,國立成功大學水利工程研究所碩士論文
    林修立、童裕翔、王俊寓、林士堯(民 112年 1月 1日)。AR6統計降尺度雨量 資料生產履歷(1.0版)。[2025年4月30日],取自臺灣氣候變遷推估資訊與調適知識平台: https://tccip.ncdr.nat.gov.tw/upload/data_profile/20220718101540.pdf
    陳柏宇 (2019),「事件最大值數列與混合分布在降雨頻率分析之應用」,國立臺灣大學共同教育中心統計碩士學位學程碩士論文
    張駿暉,流域水砂複合型災害研究與多元化調適減災策略評估-考量邊界因子相關性與時空變異性之複合淹水潛勢評估-以筏子溪流域為例(子計畫九) (II) (NSTC-113-2625-M-006-021),國科會專題研究計畫報告。(2024)
    黃婷卉 (2003),「土石流發生降雨特性之研究-以陳有蘭溪流域為主」,國立成功大學水利工程研究所碩士論文
    游保杉、陳信彰、楊道昌 (1997),「分布型降雨-逕流模式之不確定性分析」,農業工程學報,第43卷第3期
    童裕翔、陳正達、劉俊志、陳永明 (2019),「統計降尺度(日)資料評估與應用」,取自國家災害防救科技中心
    楊承道,王俊寓, 林士堯(民 113年 1月 12日)。網格化觀測雨量 V2版資料生產履歷 (4.1.1版)。[2025年4月30日],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_profi le/20220706104221.pdf
    蔡岳霖 (2022),「以三變量 Copula聯結函數探討雨型對淹水風險之影響」,國立成功大學水利工程研究所碩士論文
    內政部營建署,水環境低衝擊開發設施操作手冊。(2021)
    文化大學,大氣科學研究與應用資料庫,網址 : https://asrad.pccu.edu.tw/dbar/
    行政院數位發展部,政府資料開放平台,網址 : https://data.gov.tw/
    經濟部水利署,烏溪水系支流筏子溪治理規劃檢討水文分析報告。(2017)
    經濟部水利署,氣候變遷對重要供水水系水源水量影響分析。(2022)
    經濟部水利署,水文資訊網,網址 : https://gweb.wra.gov.tw/HydroInfoCore/

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE