簡易檢索 / 詳目顯示

研究生: 陳斌豪
Chen, Bin-Hao
論文名稱: 奈米系統界面物理現象之分子動力學研究
Molecular Dynamics Modeling on the Nano-Scale Phenomena in Interface Physics
指導教授: 楊玉姿
Yang, Yue-Tzu
陳朝光
Chen, Cha’o-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 181
中文關鍵詞: 薄膜沉積界面的物理現象原子力顯微鏡分子動力學方法
外文關鍵詞: Atomic Force Microscopy, Thin Film Deposition, Interface Physics Phenomena, Molecular Dynamics Method
相關次數: 點閱:92下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要採用理想之Morse勢能函數以及能模擬非金屬碳原子與過渡金屬原子間的勢能函數模擬系統中分子彼此間之交互作用,利用該勢能函數並以分子動力學方法配合Velocity Verlet Algorithm分別探討薄膜沉積的界面物理機制與原子力顯微鏡掃描材料界面的物理現象。在薄膜沉積的模擬中探討的製程參數包括沉積基板的幾何形狀、入射粒子動能及界面能量傳遞的物理機制及其對薄膜品質的影響。於進行原子力顯微鏡掃描材料界面問題研究時,討論探針界面粒子的吸附、奈米尺寸下的壓痕與表面破壞的物理機制及該界面現象對探針動態行為的影響。

      由薄膜製程的模擬結果中可知,當入射粒子能量較低的時沉積薄膜存在較多的空孔且薄膜覆蓋率較低;本研究中提出界面熱傳時間指標 ( time to reach the state of thermal equilibrium)及粒子的平均自由時間的比較。由結果可知粒子沉積於基板表面後的運動能力運動能力,若粒子運動能力較強則薄膜沉積品質較佳,但過大的運動能力則會造成薄膜表面的破壞而影響薄膜的品質;而基板的幾何形狀會對入射的粒子產生遮蔽效應形成較大的空孔,進而影響薄膜的品質。

      由原子力顯微鏡掃描材料界面問題研究時所得的結果可知,探針於界面受到粒子的吸附,對材料表面產生侵蝕性的表面破壞,而於材料表面產生孔穴阻擋了探針的前進並對探針產生了擾動,此擾動對原子力顯微鏡在偵測表面時造成失真。本研究進ㄧ步追蹤探針的軌跡,從軌跡圖來判讀此雜訊對探針動態行為的影響。

     The Morse and Morse-like potentials are used to predict the particle interaction of the system. These problems are investigated by the Velocity Verlet Algorithm in the field of molecular dynamics. These works include sputtering phenomenon of early-stage film growth on the interface molecular behavior and Atomic Force Microscope interface phenomena. In thin film growth simulation, the influence of the impact velocity upon the coating parameters is investigated by varying the incident energy of the deposited atoms and substrate geometry. The current results indicate that the re-sputtering is poor when atoms are deposited at low incident energies upon a low temperature substrate. At a higher incident energy and high incident group density, the re-sputtering phenomenon is significant, which results in a topography defect.

     Furthermore, This study performs molecular dynamics simulations in order to clarify the atomic-scale stick-slip behavior commonly observed when performing surface measurements using an Atomic Force Microscope (AFM). In investigating the surface effects of adhesion, contact deformation, nanoindentation and fracture which occur when a diamond tip interacts with a copper surface, this study considers that both the substrate and the tip deform. The theoretically predicted dynamic behavior of the AFM cantilever tip includes tip oscillation and noise induced by adhesion, nanoindentation and fracture effects. Molecular dynamics simulations are performed to clarify the atomic-scale friction mechanisms associated with surface deformation and to investigate the dynamic behavior of the tip during AFM surface measurement. The relative influences of the adhesion, nanoindentation and fracture effects upon the stick-slip phenomenon are investigated.

    目錄 中文摘要……………………………………………………………….Ⅳ 英文摘要……………………………………………………………….VI 誌謝…………………………………………………………………..VⅢ 表目錄……………………………………………………………….IX 圖目錄……………………………………………………………….Ⅹ 符號說明……………………………………………………………XVII 第一章 緒論…………………………………………………………1 1-1 前言……………………………………………………………1 1-2本文架構…………………………………………………………7 第二章 文獻回顧……………………………………………………10 2-1分子動力學之奠基研究………………………………………10 2-2薄膜沉積之文獻回顧………………………………………13 2-3原子力顯微鏡研究之文獻回顧………………………………14 第三章 數學模型……………………………………………………17 3-1正則系綜……………………………………………………17 3-2勢能函數……………………………………………………21 3-3勢能函數特性…………………………………………………26 3-4邊界條件……………………………………………………28 第四章 數值模式……………………………………………………45 4-1無因次分析……………………………………………………45 4-2分子速度……………………………………………………47 4-3數值計算法……………………………………………………48 4-4表列法則……………………………………………………52 4-5分子速度修正…………………………………………………54 4-5-1動量0處理…………………………………………………54 4-5-2熱平衡……………………………………………………55 4-6 程式計算法則…………………………………………………57 4-6-1平衡過程……………………………………………………57 4-6-2問題模擬……………………………………………………58 4-7李雅普諾夫穩定性……………………………………………59 第五章 結果與討論…………………………………………………65 5-1 奈米薄膜成長之界面現象………………………………………68 5-1-1 濺射粒子的作用機制………………………………………68 5-1-2 薄膜沉積之應用實例………………………………………107 5-2 原子力顯微鏡界面現象………………………………………128 第六章 結論與未來展望………………………………………146 參考文獻……………………………………………………………151 自述…………………………………………………………………159

    參考文獻

    Alder, B.J., and Wainwright, T.E., Phase Transition for a Hard Sphere System, J. Chem. Phys., 27, 1208-1209, 1957.
    Alder, B.J., and Wainwright, T.E., Studies in Molecular Dynamics. I. General Method, J. Chem. Phys., 31, 459-466, 1959.
    Allen, M.P., and Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, New York, 1987.
    Auerbach, D.J., Paul, W., Lutz, C., Bakker, F.A., Rudge, W.E., and Abraham, F.F., Aspecial Purpose Parallel Computer for Molecular Dynamics: Motivation, Design, Implementation, and Application, J. Phys. Chem., 91, 4881-4890, 1987.
    Barker, J.A., and Watts, R.O., Structure of Water: a Monte Carlo Calculation, Chem. Phys. Lett., 3, 144-145, 1969.
    Belkind A., Gerristead W. Jr., Orban Z., Thin Solid Films 207, 319-323, 1992.
    Berendsen H. J. C., Postma M. P. J., van Gunsteren W. F., Dinola A. and Haak J. R., Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys. Vol. 81, 3684-3690, 1984.
    Beeman, D., Some Multistep Methods for Use in Molecular Dynamics Calculations, J. Comput. Phys., 20, 130-139, 1976.
    Chapela, G.A., Saville, G., Thompson, S.M., and Rowlinson, J.S., Computer Simulation of a Gas-Liquid Surface. Part 1, J. Chem. Soc. Faraday Ⅱ, 73, 1133-1144, 1977.
    Chuang J. C., Chen M. C., Thin Solid Films 322, 213-217, 1998.
    Evans J. W., Sanders D. E., Thiel P. A., Depristo A. E., Phys. Rev. B 41 5410, 1989.
    Erkoc S., “Annual Reviews of Computational IX,” World Scientific
    Publishing Company, Singapore, 1-103, 2001.
    Ewald, P., Die Berechnung Optischer und Elektrostatischer Gitterpotentiale, Ann. Phys, 64, 253-281, 1921.
    Feynman, R. P., Leighton, R. B., and Sands, M., The Feynman Lectures on Physics, Addison-Wesley Reading, MA., 1963.
    Frenkel, D., and McTague, J.P., Computer Simulations of Freezing and Supercooled liquids, A. Rev. Phys. Chem., 31, 491-521, 1980.
    Frisbie C D, Rozsnyai L F, Noy A, Wrighton M S and Lieber C M Science 265 2071, 1994.
    Frenkel, D., and Smit, B., Understanding Molecular Simulation- from Algorithm to Application, Academic Press, San Diego, 1996.
    Greenspan, D., A Molecular Mechanics-Type Approach to Turbulence, Mathl. Comput. Modeling, 26, No. 12, 85-96, 1997.
    Greenspan, D., Molecular Cavity Flow, Fluid Dynamics Research, 25, 37-56, 1999.
    Greenspan, D., Molecular Mechanics Simulations of the Three-Dimensional Cavity Problem, Comput. Methods Appl. Mech. Engrg., 188, 543-552, 2000.
    Gilmer G. H., Grabow M. H. and Bakker A. F., “Modelling of epitaxial growth,” Material Science and Engineering B Vol. 6, 101-112, 1990
    Gilmore C. M., Sprague J.A., Nanostruct. Mater. 2, 301, 1993.
    Grandbois M, Rief M, Clausen-Shaumann H and Gaub H E Science 283 1730, 1999.
    Goodfellow J. M. et al., “Molecular Dynamics,” CRC Press, Boston, 1990
    Gear, C.W., The Numerical Integration of Ordinary Differential Equations of Various Orders, Report ANL 7126, Argonne National Laboratory, 1966.
    Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971.
    Harp, G. D., and Berne, B. J., Linear and Angular Momentum Autocorrelation Functions in Diatomic Liquids, J. Chem. Phys., 49, 1249-54, 1968.
    Harp, G. D., and Berne, B. J., Time Correlation Functions, Memory Functions, and Molecular Dynamics, Phys. Rev. A, 2, 975-996, 1970.
    Haile J. M., “Molecular Dynamics simulation”, John Wiley & Sons, New York, 1992.
    Heermann D. W., “Computer Simulation Method”, Springer-Verlag, Berlin, 1990.
    Hockney, R.W., The Potential Calculation and Some Applications, Methods Comput. Phys., 9, 136-211, 1970.
    Hockney, R.W., and Eastwood, J.W., Computer Simulations using Particles, McGraw-Hill, NewYork, 1981.
    Isbister, D.J., Searles, D.J., and Evans, D.J., Symplectic Properties of Algorithms and Simulation Methods, Physica A, 240, 105-114, 1997.
    Jorgensen, W.L., Chandrasekhar, J.J., Madura, D., Impey , R.W. and Klein, M.L., Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys., 79, No. 2, 926-935, 1983.
    Jun Shimizu, Hiroshi Eda, Masashi Yoritsune and Etsuji Ohmura Molecular dynamics simulation of friction on the atomic scale. Nanotechnology. 9 118-123, 1998.
    Kotake, S., Future Aspects of Molecular Heat and Mass Transfer Studies, Thermal Science & Eng., 2, No. 1, 12-20, 1994.
    Lee, J.K., Barker, J.A., and Pound, G.M., Surface Structure and Surface Tension: Perturbation Theory and Monte Carlo Calculation, J. chem. Phys., 60, 1976-1980, 1974.
    Landman Uzi, Luedtke W D, Burnham Nancy A, Richard J Colton Science 248, 454-461, 1990.
    Landau L. D. and Lifshitz E. M., Volume 1 of course of theoretical Physics, 3ed, Pergamon Press Ltd.
    Lin, David T. W. Doctoral Thesis, “Molecular Dynamic Modeling for Heat and Mass Transferin Nano-Systems”, Department of Mechanical Engineering, NCKU, 2004.
    Morse, M.D., and Rice, S.A., Tests of Effective Pair Potentials for Water: Predicted Ice Structures, J. Chem. Phys., 76, 650-660, 1982.
    Maruyama, S., Molecular Dynamics Method for Microscale Heat Transfer, W.J. Minkowycz and E.M. Sparrow (Eds), Advances in Numerical Heat Transfer, 2, Chap. 6, 189-226, Taylor & Francis, New York, 2000
    M ller K. H., Phys. Rev. B 35 7906 ,1987.
    M ller K. H., J. Appl. Phys. 58 2573, 1985.
    Mate C M, McClelland G M, Erlandsson R and Chiang S. Atomic scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59 1942.
    Maekawa K. and Itoh A., “Friction and tool wear in nano-scale Machining- a Molecular Dynamics Approach”, Wear Vol. 188, 115-122, 1995.
    Milstein F, J. Appl. Phys. 44, 3825, 1973
    Nicolas, J.J., Gubbins, K.E., Streett, W.B. and Tildesley, D.J., Equation of State for the Lennard-Jones Fluid, Mol. Phys. 37, 1429-1454, 1979.
    Nose, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Method, J. Chem. Phys., 81, 511-519, 1984a.
    Nose, S., A Molecular Dynamics Method for Simulation in the Canonical Ensemble, Mol. Phys., 52, 255-268, 1984b.
    Oh D J, Johnson R A, Mater. Res. Soc. Symp. Proc. 141 51 1989
    Potter, D., Computational Physics, Wiley, New York, 1972.
    Rahman, A., Correlations in the Motion of Atoms in Liquid Argon, Phys. Rev. A, 136, 405-411, 1964.
    Rahman, A., and Stillinger. F.H., Molecular Dynamics Study of Liquid Water, J. Chem. Phys., 55, 3336-59, 1971.
    Riedo E., Gnecco E., Thermally Avtivated effects in nanofriction, Nanotechnology, 15, S288, 2004
    Rafii-Tabar H., Kamiyama H., Cross M., Surf. Sci. 385, 187 1997
    Rafii-Tabar H., Modeling the Nano-scale Phenomena in Condensed Matter Physics Via Computer-Based Numerical Experiment, Phys Rep. 325, 239-310, 2000.
    Rapaport D. C., “The art of Molecular Dynamics Simulation,” Cambridge University Press, London, 1997.
    Stillinger, F. H., Theory and Molecular Models for Water, Adv, Chem. Phys., 31, 1-101, 1975.
    Stillinger, F. H., Water revisited, Science, 209, 451-7, 1980.
    Srolovitz A., J. Appl. Phys. 79, 1448, 1996.
    Sang Yi, Martin Dubé and Martin Grant, Thermal Effects on Atomic Friction, Phys Rev Lett. 87, 174301, 2001.
    Smith R. et al., “Atomic & Ion Collisions in Solids and at Surfaces” ,Cambridge University Press, London, 1997.
    Schlick, T., Barth, E., and Mandziuk, M., Biomolecular Dynamics at Long Timesteps: Bridging the Timescale Gap between Simulation and Experimentation, Annu. Rev. Biophys. Struct., 26, 181-222, 1997.
    Ma S. K., Ststistical Mechanics, World Scientific, 1985.
    Thornton J. A., in: Bunshah R. F. (Ed), Deposition Technologies for thin films and coatings, Noyes, Park Ridge, NJ, p. 170, 1982.
    Verlet, L., Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev., 159, 98-103, 1967.
    Verlet, L., Computer ‘Experiments’ on Classical Fluids. II. Equilibrium Correlation Functions, Phys. Rev. 165, 201-14, 1968.
    Volz, S., Saulnier, J. B., Chen, G., and Beauchamp, P., Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques, J. Microelectronics, 31, 815-819, 2000.
    Von Neumann, J., Various Techniques Used in Connection with Random Digits, Us Nat. Bur. Stand. Appl. Math. Ser., 12, 36-38, 1951.
    Wood, D. W., Computer Simulation of Water and Aqueous Solutions, In Water: a Comprehensive Treatise (ed. F. Franks), 6, 279-409, Plenum Press, New York, 1979.

    下載圖示 校內:立即公開
    校外:2005-07-05公開
    QR CODE