簡易檢索 / 詳目顯示

研究生: 王亭允
Wang, Ting-Yun
論文名稱: 不同程度的體感覺喪失對站立平衡控制的影響
Influence of Different Degrees of Somatosensation Loss on Standing Balance Control
指導教授: 林桑伊
Lin, Sang-I
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 109
中文關鍵詞: 體感覺平衡控制缺血性阻斷並同程度的感覺喪失
外文關鍵詞: bdifferent degrees of sensory lossalance control, Somatosensation, ischemic blockage
相關次數: 點閱:41下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   研究背景與目的:體感覺在站立平衡控制中是相當重要一種感覺訊息來源,因為它能夠提供神經系統包括:身體與外界的接觸感覺,和肢體與肢體間的相對位置感覺等訊息,而藉以維持身體的穩定狀態。過去文獻指出,當正常的體感覺輸入被改變後,站立平衡控制能力便會有惡化的情況產生,雖然這些研究利用實驗室方法改變了原本正常體感覺輸入,但多半是造成未知程度的體感覺改變(如:軟墊站立),或是完全將體感覺輸入阻斷(如:缺血性阻斷),因此體感覺的喪失程度和平衡控制能力改變之間的關係仍舊不甚明確。因此,本篇研究的目的便是要探討在不同程度的體感覺喪失情況下,對站立平衡控制的影響程度。

      研究方法:共有21名健康的年輕受試者參與本實驗。整個實驗過程中,利用缺血性阻斷的方式,來阻斷受試者腳踝以下的體感覺輸入,並利用阻斷時間的不同,以製造以下三種不同程度的體感覺喪失情況:正常的體感覺輸入、部分體感覺喪失情況,和體感覺完全喪失情況。為了確認體感覺被阻斷的程度,受試者會接受二種不同的感覺測量,包括:1) 觸壓覺閾值,和2) 電流感覺閾值。觸壓覺閾值(反應受試者對觸壓感覺的敏感度)是利用Semmes-Weinstein單纖維尼龍絲來作測量;電流感覺閾值(反應受試者的大型神經纖維對電流刺激強度敏感度)則是使用神經感覺測試儀來作測量,此儀器能產生非侵入性的經皮電刺激,並以刺激電量的大小來量化受試者的電流感覺閾值。在平衡功能測試部分,受試者必須完成以下四種不同的平衡功能測試項目:1) 自然站立情況(同時在張眼和閉眼二種情況下),和2) 較窄支撐底面的站立情況(同時在張眼和閉眼二種情況下)。在資料分析的部分,會利用壓力中心(center of pressure)的位移反應受試者的平衡控制能力,並計算以下幾個壓力中心的位移參數:位移軌跡、前後向位移幅度,和前後向位移速度。

      結果:在體感覺測量部分,觸壓覺閾值和電流感覺閾值都隨著體感覺喪失的愈多,而顯著增加。在平衡控制能力部分,受試者不論執行那一種平衡功能測試項目,其壓力中心的位移軌跡和前後向位速度等二個參數,在體感覺部分喪失和完全喪失兩種情況各分別與正常體感覺輸入情況相較,都有顯著的增加。比較受試者在體感覺部分喪失和體感覺完全喪失等二個情況下的平衡控制能力時,受試者只有在較窄底面積站立,且閉眼的情況下,其壓力中心的位移軌跡和前後向位移速度,才有顯著的改變。

      結論:體感覺輸入不論是部分喪失或完全喪失,都會影向我們的站立平衡控制能力。此外,平衡控制能力的惡化並不單只與體感覺所喪失的程度相關,它還與所剩餘可利用的其它週邊感覺輸入的多寡,和所執行的平衡功能項目的難易度有關。藉由這樣的結果,當我們在臨床上評估一個體感覺損傷的病人其平衡控制能力時,除了注意其感覺受損的程度之外,還必須同時著重其所能利用的剩餘週邊感覺輸入,和其所執行的平衡功能測試項目的難易度。

      Background and Purpose:Somatosensation allows the nervous system to determine surface orientation as well as the relation between body segments, and thus provides essential sensory input for balance control. Previous studies have shown that experimentally induced changes in the function of the somatosensory system would be accompanied by deterioration in standing balance control. While some of the studies induced unknown degrees of altered sensory condition (i.e. standing on a compliant surface), others induced total sensory loss (i.e. ischemic blockage). However, the relationship between the degree of somatosensory loss and balance deterioration is still not clear. The purpose of this study was to investigate the influence of different degrees of somatosensation loss on standing balance control.

      Methods:Twenty-one healthy young subjects were recruited. Three somatosensory statuses, intact, partial loss, and total loss, were manipulated by varying the duration of ischemic blocking of afferent inputs below the ankles. To identify the extent of somatosensory loss induced by ischemic blockage, two sensory tests were performed: 1) touch-pressure threshold (TPT), and 2) current perception threshold (CPT). TPT (reflected the sensitivity to the touch and pressure stimulation) was measured by Semmes-Weinstein Aesthesiometer; CPT (reflected the sensitivity of the large afferent fiber to electrical stimulation), was measured by Neurometer, which emitted a non-aversive transcutaneous electrical stimulus to quantify CPT values. Subjects were asked to perform the following balance tasks:quiet stance with eye open and eye closed;narrow space stance with eye open and eye closed, on a force platform. The following variables of the motion of center of pressure (to reflect the body sway during quiet standing) were calculated for analysis:trajectory, anteroposterior range (AP range), and anteroposterior mean instantaneous velocity (AP velocity).

      Results:TPT and CPT were significantly increased according to greater extent of somatosensation loss. In all the balance trials, trajectory and AP velocity were significantly increased in both partial and total loss conditions when comparing to those in intact sensory condition. Between partial and total sensory loss conditions, the trajectory and AP velocity were changed significantly only in the narrow space standing trial, eye closed condition.

      Conclusion:Both partial and total loss of somatosensation would deteriorate standing balance control abilities. In addition, deterioration of balance performance was not solely determined by the degree of somatosensory loss, but also by the availability of other sensory sources and the difficulty of the balance task. Thus, when evaluating balance performances of patients with somatosensory dysfunction clinically, attention should be also be given to the availability of other sensory inputs and task difficulty.

    中文摘要 --------------------------------------------------------------------3 英文摘要 --------------------------------------------------------------------5 誌謝 ------------------------------------------------------------------------7 特殊榮耀---------------------------------------------------------------------8 表目錄 ----------------------------------------------------------------------12 圖目錄 ----------------------------------------------------------------------13 符號說明 --------------------------------------------------------------------15 第一章 理論與文獻回顧 -------------------------------------------------------16 第一節 平衡控制簡介 -------------------------------------------------16 第二節 體感覺系統在站立平衡控制所扮演的角色 -------------------------20 第三節 體感覺受損對站立平衡控制的影響 -------------------------------27 第二章 研究背景 -------------------------------------------------------------31 第一節 研究動機 -----------------------------------------------------31 第二節 研究目的 -----------------------------------------------------34 第三節 研究假設 -----------------------------------------------------35 第三章 研究方法 -------------------------------------------------------------36 第一節 研究設計 -----------------------------------------------------36 第二節 受試者 -------------------------------------------------------37 第三節 測試工具 -----------------------------------------------------38 第四節 測試步驟 -----------------------------------------------------45 第五節 重要參數定義與資料處理 ---------------------------------------61 第六節 統計分析 -----------------------------------------------------63 第四章 結果 -----------------------------------------------------------------65 第一節 受試者基本資料 -----------------------------------------------65 第二節 肌肉力量測量結果 ---------------------------------------------66 第三節 測量時間 -----------------------------------------------------67 第四節 疼痛程度與感覺功能評估結果 -----------------------------------68 第五節 站立平衡控制能力測試結果 -------------------------------------72 第六節 疼痛程度與站立平衡控制能力的相關性結果 -----------------------79 第五章 討論 -----------------------------------------------------------------81 第一節 缺血性阻斷對動作功能的影響 -----------------------------------81 第二節 量化不同程度之體感覺喪失的結果 -------------------------------83 第三節 體感覺喪失程度與站立平衡控制表現之關係 -----------------------84 第四節 疼痛程度與站立平衡控制表現之關係 -----------------------------90 第五節 臨床應用 -------------------------------------------------------------91 第六節 研究限制 -----------------------------------------------------92 第七節 未來發展 -----------------------------------------------------93 第六章 結論 -----------------------------------------------------------------94 第七章 參考文獻 -------------------------------------------------------------95 附錄 ------------------------------------------------------------------------104 自述 ------------------------------------------------------------------------109

    1.Anonymous. Technology and equipment review: Quantitative sensory testing systems. J Clin Neurophysiol. 12:192-202, 1995.

    2.Basmajian JV, De Luca C. Muscle alive:Their function revealed by electromyography. In Ch 12. Williams & Wilkins, Baltimore. p. 252-264, 1985.

    3.Bell-Krostski J, Tomancik E. The repeatability of testing with Semmes-Weinstein monofilaments. J Hand Surg. 12A:155-161, 1987.

    4.Bergin PS, Bronstein AM, Murray NM, Sancovic S, Zeppenfeld DK. Body sway and vibration perception thresholds in normal aging and in patients with polyneuropathy. J Neurol Neurosurg Psychiatry. 58(3):335-340, 1995.

    5.Bijur PE, Silver W, Gallagher EJ: Reliability of the visual analog scale for measurement of acute pain. Academic Emergency Medicine. 8(12):1153-1157, 2001.

    6.Bronstein AM, Brandt T, Woollacott MH. Clinical disorders of balance, posture, and gait. In Ch 1. Arnold, London. p. 1-41, 1996.

    7.Chu NS. Current perception thresholds in toe-to-digit transplantation and digit-to-digit replantation. Muscle Nerve. 19:183-6, 1996.

    8.Day BL, Severac Cauquil A, Bartolomei L, Pastor MA, Lyon IN. Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism. J Physiol. 500 (Pt 3):661-672, 1997.

    9.Day BL, Steiger MJ, Thompson PD, Marsden CD. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway. J Physiol. 469:479-499, 1993.

    10.Diener HC, Dichgans J, Guschlbauer B, Mau H. The significance of proprioception on postural stabilization as assessed by ischemia. Brain Res. 296(1): 103-109, 1984.

    11.Downie WW, Leatham PA, Rhind VW, Wright V, Branco JA, Anderson JA. Studies with pain rating scales. Ann Rheum Dis. 37:378–381, 1978.

    12.Freeman R, Stewart JD. Quantitative sensory testing: An AAEM Workshop. American Association of Electrodiagnostic Medicine. p. 1-4, 1996.

    13.Friden T, Roberts D, Ageberg E, Walden M, Zatterstrom R. Review of knee proprioception and the relation to extremity function after an anterior cruciate ligament rupture. J Orthop Sports Phys Ther. 31(10):567-76, 2001.

    14.Fujiwara K, Asai H, Toyama H, Kunita K: Perceptibility of body position in anteroposterior direction while standing with eyes closed. Percept Mot Skills. 88(2): 581-9, 1999.

    15.Gill J, Allum JH, Carpenter MG, et al. Trunk sway measures of postural stability during clinical balance tests: effects of age. Journals of Gerontology Series A-Biological Sciences & Medical Sciences. 56(7):M438-M447, 2001.

    16.Gottlieb GL, Agarwal GC, Jaeger RJ. Response to sudden torques about ankle in man: V effects of peripheral ischemia. J Neurophysiol. 50(1):297-312, 1983.

    17.Gurfinkel VS, Ivanenko YuP, Levik YuS, Babakova IA. Kinesthetic reference for human orthograde posture. Neuroscience. 68(1):229-243, 1995.

    18.Halar EM, Hammond MC, LaCava EC, Camann C, Ward J. Sensory perception threshold measurement: an evaluation of semiobjective testing devices. Arch Phys Med Rehabil. 68(8):499-507, 1987.

    19.Hayashi R, Miyake A, Watanabe S. The functional role of sensory inputs from the foot: stabilizing human standing posture during voluntary and vibration-induced body sway. Neurosci Res. 5(3):203-213, 1988.

    20.Hislop Hj, Montgomery J. Muscle testing:Techniques of Manuel Examination. 6th Ed. W.B. Saunders Company. p. 211-220;227-233, 1995.

    21.Horak FB. Postural ataxia related to somatosensory loss. Adv Neurol. 87:173-182, 2001.

    22.Horak FB, Hlavacka F. Somatosensory loss increases vestibulospinal sensitivity. J Neurophysiol. 86(2):575-585, 2001.

    23.Horak FB, Shupert CL, Dietz V, Horstmann G. Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp Brain Res 100(1):93-106,
    1994.

    24.Horak FB, Nashner LM, Diener HC. Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res. 82(1):167-177, 1990.

    25.Ivanenko YP, Grasso R. Integration of somatosensory and vestibular inputs in perceiving the direction of passive whole-body motion. Cognitive Brain Research. 5(4): 323-327, 1997.

    26.Jeng C, Michelson J, Mizel M. Sensory thresholds of normal human feet. Foot Ankle Int. 21(6):501-504, 2000.

    27.Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. In: Martin JH. Somatic sensory system I:Receptor physiology and submodality coding. 1st Ed. Elsevier/North-Holland, New York. p.157-169, 1981.

    28.Katims JJ, Rouvelas P, Sadler BT, Wesely SA. Current
    perception threshold: reproducibility and comparison with nerve conduction in evaluation of carpal tunnel syndrome. Trans Am Soc Artif Inern Organs. 35:280-284, 1989.

    29.Kavounoudias A, Roll R, Roll JP: Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. J Physiol. 532(Pt 3):869-878, 2001.

    30.Kavounoudias A, Gilhodes JC, Roll R, Roll JP: From balance regulation to body orientation: two goals for muscle proprioceptive information processing? Exp Brain Res. 124(1):80-8, 1999.

    31.Kavounoudias A, Roll R, Roll JP. The plantar sole is a 'dynamometric map' for human balance control. Neuroreport. 9(14):3247-3252, 1998.

    32.Kendall FP, McCreary EK, Provance PG. Muscles: Testing and function. 4th Ed, Williams & Wilkins, Baltimore. 382-393, 1993.

    33.Latash ML. Neurophysiological basis of movement. Human Kinetics. p.40; 76-77;166-167;195-196, 1998.

    34.Lerner TH, Goldstein GR, Hittelman E. Quantitative sensory nerve conduction threshold (sNCT) evaluation of the trigeminal nerve at the mental foramen area. J Prosthet Dent. 84(1):103-107, 2000.

    35.Libman M, Berkoff D, Lahn M, Bijur P, Gallagher EJ. Independent validation of the minimum clinically important change in pain scores as measured by visual analog scale. Acad Emerg Med. 7:550, 2000.

    36.Lord SR, Ward JA. Age-associated differences in sensori-motor function and balance in community dwelling women. Age Ageing. 23(6):452-460, 1994.

    37.Lord SR, Clark RD, Webster IW. Postural stability and associated physiological factors in a population of aged persons. J Gerontol. 46(3):M69-M76, 1991.

    38.Magladery DD, McDouglas DB, Stoll J. Electrophysiological studies of nerve and reflex activity in normal man. II. The effects of peripheral ischemia. Johns Hopkins Hosp Bull. 86:291-312, 1950.

    39.Magnusson M, Enbom H, Johansson R, Pyykko I. Significance of pressor input from the human feet in anterior-posterior postural control. The effect of hypothermia on vibration-induced body-sway. Acta Oto-Laryngol. 110(3-4):182-188, 1990.

    40.Magnusson M, Enbom H, Johansson R, Wiklund J. Significance of pressor input from the human feet in lateral postural control. The effect of hypothermia on galvanically induced body-sway. Acta Oto-Laryngol. 110(5-6):321-327, 1990.

    41.Marx RG, Hudak PL, Bombardier C, et al. The reliability of physical examination for carpal tunnel syndrome. J Hand Surg [Br]. 23B:499-502, 1998.

    42.Masson EA, Boulton AJ. The Neurometer. Validation and comparison with conventional tests for diabetic neuropathy. Diabet Med. 8:S63-66, 1991.

    43.Mauritz KH, Dietz V. Characteristics of postural instability induced by ischemic blocking of leg afferents. Exp Brain Res. 38(1):117-9, 1980.

    44.McCollum G, Shupert C, Nashner L. Organizing sensory information for postural control in altered sensory environments. J Theor Biol. 180:257-270, 1996.

    45.McCormack HM, Horne DJL, Sheather S. Clinical applications of visual analogue scales: a critical review. Psychol Med. 18:1007–1019, 1988.

    46.Mergner T, Rosemeier T. Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions�{a conceptual model. Brain Res Rev. 28(1-2):118-135, 1998.

    47.Novak CB, Mackinnon SE, Williams JI, Kelly L. Establishment of reliability in the evaluation of hand sensibility. Plast Reconstr Surg. 92(2):311-322, 1993.

    48.Olmos PR, Cataland S, TM OD, Casey CA, Smead WL, Simon SR. The Semmes-Weinstein monofilament as a potential predictor of foot ulceration in patients with noninsulin-dependent diabetes. Am J Med Sci Sciences. 309(2):76-82,
    1995.

    49.Pitei DL, Watkins PJ, Stevens MJ, Edmonds ME. The value of the Neurometer CPT in assessing diabetic neuropathy by measurement of the current perception threshold. Diabet Med. 11:872-876, 1994.

    50.Redfern MS, Yardley L, Bronstein AM. Visual influences on balance. J Anxiety Disorders. 15(1-2):81-94, 2001.

    51.Rendell MS. A comparison of nerve conduction velocities and current perception threshold as correlates of clinical severity of diabetic sensory neuropathy. J Neurol Neurosurg Psychiatry. 52:502-511, 1989.

    52.Resnick Hea. Diabetes, peripheral neuropathy, and old age disability. Muscle Nerve. 25:43-50, 2002.

    53.Ring C, Nayak US, Isaacs B. The effect of visual deprivation and proprioceptive change on postural sway in healthy adults. J Am Geriatr Soc. 37(8):745-749, 1989.

    54.Rith-Najarian SJ, Stolusky T, Gohdes DM. Identifying diabetic patients at high risk for lower-extremity amputation in a primary health care setting. A prospective evaluation of simple screening criteria. Diabetes Care.
    15:1386-89, 1992.

    55.Schenkman M, Butler RB. A model for multisystem
    evaluation, interpretation, and treatment of individuals with neurologic dysfunction. Phys Ther. 69(7):538-547, 1989.

    56.Scott J, Huskisson EC. Vertical or horizontal visual analogue scales. Ann Rheum Dis. 38:560, 1979.

    57.Shumway-Cook A, Woollacott MH. Motor control: Theory and practical applications. In Ch7: Normal postural control. In: Ch10: Abnormal postural control, 2nd Ed, Lippincott Williams & Wilkins, Philadelphia. pp 163-191, 248-267, 2001.

    58.Sinclair DC. Observations on sensory paralysis produced by compression of a human limb. J Neurophysiol. 11:75-92, 1948.

    59.Teasdale N, Stelmach G, Greunig A. Postural Sway Characteristics of the elderly Under Normal and Altered Visual and Support Surface Conditions. J Gerontol. 46: 238-244, 1991.

    60.Thoumie P, Do MC. Changes in motor activity and biomechanics during balance recovery following cutaneous and muscular deafferentation. Exp Brain Res. 110(2): 289-297, 1996.

    61.Todd KH, Funk KG, Funk JP, Bonacci R. Clinical significance of reported changes in pain severity. Ann Emerg Med. 4:485–489, 1996.

    62.Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 59(4):919-957, 1979.

    63.Vinik AI, Suwanwalaikorn S, Stansberry KB, Holland MT, McNitt PM, Colen LE. Quantitative measurement of cutaneous perception in diabetic neuropathy. Muscle Nerve. 19(3):403-404, 1996.

    64.Vinik AI, Holland MT, LeBeau JM, Liuzzi FJ, Stansberry KB, Colen LB. Diabetic neuropathies. Diabetes Care. 15:1926-75, 1992.

    65.Wade MG, Jones G. The role of vision and spatial orientation in the maintenance of posture. Phys Ther. 77(6):619-628, 1997.

    66.Williams GN, Chmielewski T, Rudolph K, Buchanan TS, Snyder Mackler L. Dynamic knee stability: current theory and implications for clinicians and scientists. J Orthop Sports Phys Ther. 31(10):546-566, 2001.

    67.Winter DA, Patla AE, Prince F, Ishac M, Gielo Perczak K. Stiffness control of balance in quiet standing. J Neurophysiol. 80(3):1211-1221, 1998.

    68.Winter DA. Biomechanics and motor control of human movement. In Ch 4. Wiley, New York. p. 93-96, 1990.

    69.胡名霞。動作控制與動作學習:第六章。金名圖書有限公司,台北市。 p. 65-80, 2003.

    70.胡名霞,林慧芬。成年人站立平衡之研究—感覺整合與年齡效應之分析。中華民國物理治療雜誌。19:66-77, 1994.

    下載圖示 校內:立即公開
    校外:2004-07-23公開
    QR CODE