| 研究生: |
周平 Chou, Ping |
|---|---|
| 論文名稱: |
雙感測層有機薄膜電晶體應用於酒精氣體感測器之研究 Double Sensing Layer of Organic Thin-Film Transistors-based Ethanol Gas Sensor |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 有機薄膜電晶體 、有機薄膜電晶體氣體感測器 、五苯環 、料酞菁铜(II)(β-型) 、酒精氣體感測器 |
| 外文關鍵詞: | Organic Thin-Film Transistors, Organic Thin-Film Transistors as gas sensor, Pentacene, CuPc, ethanol gas sensor |
| 相關次數: | 點閱:225 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用加入CuPc緩衝感測層於有機薄膜電晶體元件,藉此提高元件對酒精氣體的響應度及穩定性。由於感測層的特性對氣體感測器而言,為最重要的影響因素,因此本研究藉由改變不同通道層鍍率和加入不同厚度的CuPc緩衝層於感測器中,一方面提升元件特性;另一方面藉由CuPc本身亦對酒精氣體具良好的反應能力來當作雙感測層的應用,藉此提高元件對酒精氣體之響應度。由實驗結果可知,在通道層Pentacene厚度50 nm且鍍率為1.5 Å/s和緩衝層CuPc厚度為5 nm時,其場效載子移動率可到達為2.283×10-1 cm2/Vs,同時在100 ppm的酒精氣體濃度下,其響應度能達到70%。此結果相較於未加入緩衝層CuPc時,其場效載子移動率為6.74×10-2 cm2/Vs,在100 ppm酒精濃度下其響應度35%等結果有明顯提升,元件對酒精氣體響應度和特性表現更佳。
The goal of this research is to enhance the sensitivity and stability of the OTFT ethanol gas sensor by adding a CuPc buffer-sensing layer. Because the sensing layer is the most important part of the gas sensor, this research modulated the thickness of CuPc layer and changed different evaporation rate of the Pantacene active layer of the ethanol gas sensor device to improve the performance. Moreover, the CuPc buffer layer, which possessed well sensitivity for ethanol, can effectively enhance the sensing response of the gas sensor. According to the experimental results, when the thickness of pentacene active layer was 50 nm with evaporation rate of 1.5 Å/s and CuPc buffer layer was 5 nm, the optimized characteristic can be obtained. The mobility and gas response of the OTFT gas sensor with 5-nm-thick CuPc buffer layer its mobility achieved 2.283×10-1 cm2/Vs and 70% under 100 ppm ethanol. The results were much better than the one without CuPc buffer layer which possessed the mobility and gas response of 6.74×10-2 cm2/Vs and 35% under 100 ppm ethanol, respectively.
[1]C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett., vol. 40, pp. 1098-1101, 1977.
[2] S. P. Li, D. P. Chu, C. J. Newsome, D. M. Russell, T. Kugler, M. Ishida, and T. Shimoda, “Short-channel polymer field-effect-transistor fabrication using spin-coating-induced edge template and ink-jet priting”, Appl. Phys. Lett., vol. 87, pp. 232111-232111-3, 2005.
[3] V. M. Silva, and L. Pereira, “The nature of the electrical conduction and light emitting efficiency in organic semiconductors layers: The case of [m-MTDATA] – [NPB] – Alq3 OLED”, J Non-crystal solids, vol. 352, pp. 5429-5436, 2006.
[4] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics”, Adv. Mater., vol. 14, pp. 99-117, 2002.
[5] L. Torsi, N. Cioffi, C. Di Franco, L. Sabbatini, P. G. Zambonin, and T. Bleve-Zacheo, “Organic thin film transistor: from active materials to novel applications”, Sol. St. Elec., vol. 45, pp. 1479-1485, 2001.
[6] B. Liu, G. Z. Xie, X. S. Du, X. Li, and P. Sun, “Pentacene based organic thin-film transistor as gas sensor”, International Conference on ICACIA, 2009.
[7] X. Li, Y. D. Jiang, G. Z. Xie, X. S. Du, H. L. Tai, J. F. Yan, and S. Qifu, “ Ethanol gas sensor based on copper phthalocyanine thin-film transistors”, International Conference on ICACIA, 2010.
[8] R. Wisnieff, “Printing Screens”, Nature, vol. 394, pp. 225, 1998.
[9] J. H. Schon, C. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors”, Org. Electronics, vol. 1, pp. 57-64, 2000.
[10] S. M. Sze, “Physics of semiconductor device”, Wiley (1981).
[11] R. M. Glaeser and R. S. Berry, “Mobilities of electrons and holes in organic molecular solids comparison of band and hopping models”, J. Chem. Phys., vol. 44, pp. 3797-3810, 1966.
[12] N. B. Zhitenev, H. Meng, and Z. Bao, “Conductance of small molecular junctions”, Phys. Rev. Lett., vol. 88, pp. 226801-226801-3, 2002.
[13] J. Cornil, J. Ph. Calbert, and J. L. Brédas, “Electronic structure of the pentacene single crystal: relation to transport properties”, J. Am. Chem. Soc., vol. 123, pp. 1250-1250-3, 2001.
[14] S. Verlaak, V. Arkhipov, and P. Heremans, “Modeling of transport in polycrystalline organic semiconductor films”, Appl. Phys. Lett., vol. 82, pp. 745-747, 2003.
[15] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett., vol. 80, pp. 4384-4386, 2002.
[16] F. Amy, C. Chan, and A. Kahn, “Polarization at the gold/pentacene interface”, Org. Chem., vol. 6, pp. 85-91, 2005.
[17] P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors”, Sol. St. Elec., vol. 47, pp. 559-262, 2003.
[18] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A.Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors”, Sol. St. Elec., vol.47, pp. 297-310, 2003.
[19] R. Hajlaoui, G. Horowitz, F. Garnier, A. A. Arce-Brouchet, L. Laigre, A. E. Kassmi, F. Demanze, and F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene, Adv. Mater., vol. 9, no. 5, pp. 389-391, 1997.
[20] S. Y. Park, Y. H. Noh, and H. H. Lee, “Introduction of an interlayer between metal and semiconductor for organic thin-film transistors”, Appl. Phys. Lett., vol. 88, pp. 113503-113503-3, 2006.
[21] H. Mu, D. Klotzkin, A. de Silva, H. P. Wagner, D. White, and B. Sharpton, “Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq3 in OLED”, J. Phys. D: Appl. Phys., vol. 41, no. 23, pp. 235109-235109-5, 2008.
[22] M. Zadsar, H. R. Fallah, M. H. Mahmoodzadeh, and S. V. Tabatabaei, “The effect of Ag layer thickness on the properties of WO3/Ag/MoO3 multilayer films as anode in organic light emitting diodes”, J. lumen., vol. 132, pp. 992-997, 2012.
[23] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett., vol. 70 , pp. 152-154, 1997.
[24] Y. Divayanaa , B.J. Chena , X.W. Suna,, T.K.S. Wonga , K.R. Sarmab, and X. Huc, “Hole injection or blocking? The role of CuPc in Alq3-based organic light-emitting devices”, J. Cryst. Growth, vol. 288, pp. 105-109, 2006.
[25] F.C. Chen, L.J. Kung, T.H. Chen, and Y.S. Lin “Copper phthalocyanine buffer layer to enhance the charge injection in organic thin-film transistors”, Appl. Phys. Lett., vol. 90, pp. 073504-073504-3, 2007
[26] Y. Li, Q. Liu, J.Cai, Y. Li, Y.Shi, X. Wang, and Z. Hu,“Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration”, AIP Adanvances, vol. 4, pp. 067126-067126-6, 2014.
[27] H. Gui, B. Wei, and J. Wang, “High sensitivity and air stability in an organic transistor-based biosensor by inserting a CuPc layer”, Phys. Status Solidi, A. 211, no. 11, pp. 2499–2502, 2014.
[28] I. Masamichi and S. Hirokazu, “Sensing mechanism of SnO2 gas sensors”, J. Mater. Sci., vol. 25, pp. 259-352, 1990.
[29] A. Mohammadi, M. A. Hasan, B. Liedberg, I. Lundstrom, and W. R. Salanek, “Chemical vapour deposition (CVD) of conducting polymers: polypyrrole”, Synth. Met., vol. 14, pp. 189-197, 1986.
[30] G. B. Dan, “Electroduction conjugated polymers new sensitive matrices to build up chemical or electrochemical sensors a review”, Sens. Actuator B-Chem., vol. 6, pp. 45-56, 1992.
[31] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, “Interactions of tin oxide surface with O2, H2O and H2”, Surf. Sci., vol. 86, pp. 335-339, 1979.
[32] S. Mukhopadhyay, C. A. Hogarth, S. C. Thorpe, and M. J. Cook, “Materials in electronics”, J. Mater. Sci., vol. 5, pp. 312-323, 1994.
[33] H. Y. Wang, W. H. Ko, D. A. Batzel, M. E. Kenney, and J. B. Lando, “Phthalocyanine langmuir-blodgett film microsensors for Halogen Gases” , Sens. Actuator B-Chem., vol. 1, pp. 138-141, 1990.
[34] J. P. Blasquez, J. P. Germain, A. Larbi, C. Maleysson, and H. Robert, “Study of the action of gases on a polypyrrole film”, Sens. Actuator B-Chem., vol. 1, pp. 130-133, 1988.
[35] B. Bott and T. A. Jones, “Gas-induced electrical conductivity changes in metal phthalocyanines”, Sens. Actuator B-Chem., vol. 9, pp. 27-37, 1986.
[36] Y. Sadaoka, T. A. Jones, G. S. Revell, and W. Gopel, “Effects of morphology on NO detection in air at room temperature with phtalocyanine 2 thin films”, J. Mater. Sci., vol. 25, pp. 5257–5268, 1990.
.
[37] H. Hagase, K. Wakabayashi, and T. Imanaka, “Effect of doping anion in polypyrrole gas sensors”, Sens. Actuator B-Chem., vol. 13, pp. 596-597, 1993.
[38] T. Hanawa and H. Yoneyama, “Bull gas sensitivities of polypyrrole film to electron acceptor gases”, Chem. Soc. Jpn, vol. 62, pp. 1710-1714, 1989.
[39] G. Nagasubramanian, S.D. Stefano, and J. Moacanin, “ Electrochemical incorporation of poly(pyrrole) into nafion and comparison of the electrochemical properties of nationpoly(pyrrole) and poly(pyrrole) films”, J. Phys. Chem., vol. 90 , pp. 4447-4450, 1986.
[40] O. Niwa, M. Kakuchi, and T. Tamamura, “Polypyrrole-based conducting polymer alloy films: physical properties and film morphology”, Macromolecules, vol. 20, pp. 749-753 ,1987.
[41] F. Selampinar, U. Akbulut, T. Yacin, S. Suzer, and L. Toppare, “A conducting composite of polypyrrole II as a gas sensor ”, Synth. Met., vol. 68, pp. 109-116, 1995.
[42] L. Torsi, A. Dodabalapur, L. Sabbatini, and P. G. Zambonin, “Multi-parameter gas sensors based on organic thin-film-transistors”, Sens. Actuator B-Chem., vol. 67, pp. 312-316, 2000.
[43] B. Crone, A. Dodabalapur, and A. Gelperin, “Electronic sensing of vapors with organic transistors”, Appl. Phys. Lett., vol. 78, pp. 2229-2231, 2001.
[44] J. Chang, “Functionalized polythiophene thin-film transistors for low-cost gas sensor arrays”, Technical Report of EECS, 2006.
[45] L. Torsi, A. J. Lovinger, and B. Crone, “Correlation between oligothiophene thin film transistor mophology and vapor response”, J Phys Chem B., vol. 106, pp. 12563-12568, 2002.
[46] T. S. Huang, Y. K. Suand, and P. C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer”, Appl. Phys. Lett., vol. 91, pp. 092116- 092116 -3, 2007.
[47] W. Wang, J. Shi, W. Jiang, S. Guo, H. Zhang, B. Quan, and D. Ma, “High-mobility pentacene thin-film transistors with copolymer-gate dielectric”, Microelectron. J., vol. 38, pp. 27-30, 2007.
[48] J. C. Bernède, F. Martinez, G. Neculqueo, and L. Cattin, “On the improvement of the electroluminescent signal of organic light emitting diodes by the presence of an ultra-thin metal layer at the interface organic/ITO” , phys. stat. sol. (RRL), vol. 2, no. 1, pp. 10–12, 2008.
[49] N. J. Watkins, Li. Yan, Y. Gao, and C. W. Tang, “Evidence of electron and hole transfer in metal/CuPc interfaces”, P. Soc. Photo-opt. Ins., vol. 248, 2003.
[50] H. G. Kim, J. S. Jang, S. T. Hur, S. W. Choi, S. S. Kim, H. Tada, H. Takezoe, and K. Ishikawa, “Thin-film field-effect transistors of copper phthalocyanine on a rubbed polyethersulfone”, Thin Solid Films, vol. 519, pp. 2011-2014, 2011.
[51] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene organic thin-film transistors—molecular ordering and mobility”, IEEE Electron Dev. Lett., vol. 18, no. 3, pp. 87-89, 1997.
[52] M. H. Choo, J. H. Kim, and S. Im, “Hole transport in amorphous -crystalline-mixed and amorphous pentacene thin-film transistors”, Appl. Phys. Lett., vol. 81, pp. 4640-4643, 2002.
[53] J. H. Park, C. H. Kang, Y. J. Kim, Y. S. Lee, and J. S. Choi, “Characteristics of pentacene-based thin-film transistors”, Mater. Sci. Eng.C, vol. 24, pp. 27-29, 2004.