| 研究生: |
邱健庭 Chiu, Cheng-Ting |
|---|---|
| 論文名稱: |
硫鈷鎳/石墨烯/奈米碳管三維多孔複合材料之製備與電容特性 Fabrication and electrochemical performance of 3-dimensional porous NiCo2S4/graphene/carbon nanotube composite for supercapacitors |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 硫鈷鎳 、還原氧化石墨烯 、奈米碳管 、三維多孔 、超級電容器 |
| 外文關鍵詞: | nickel/cobalt sulfide, reduced graphene oxide, carbon nanotube, hydrothermal method, 3-dimensional porous, supercapacitor |
| 相關次數: | 點閱:150 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關硫鈷鎳/石墨烯/奈米碳管(NCS/rGO/CNT)三維多孔複合材料之製備及其超級電容器性能之探討。此複合材料結合硫鈷鎳奈米粒子良好的贋電容特性及還原氧化石墨烯的高比表面積、導電性與電雙層電容特性,而奈米碳管的存在不僅可作為隔離物防止還原氧化石墨烯的凝集與堆疊,且有助於導電通路的建立以增強電子傳遞。在乙二胺與硫脲存在下,可利用簡易的一步水熱法同時合成硫鈷鎳奈米粒子並將氧化石墨烯還原,製得NCS/rGO/CNT三維多孔複合材料。結果顯示,添加奈米碳管確實可有效抑制NCS/rGO的凝集與堆疊。但過量的奈米碳管則會影響硫鈷鎳奈米粒子的成長並聚集成較大的粒子,導致電容性能因表面積下降而變差。在2 M氫氧化鉀電解液中,含適量奈米碳管之NCS/rGO/CNT三維多孔複合材料,其電容值在電流密度為1、2、3、4與 5 A/g時分別可達1875、1806、1744、1712與1679 F/g;但若未添加奈米碳管時,則分別僅有1102、999、950、903與865 F/g。且在電流密度為4 A/g時,充放電循環1600次後的電容值仍可維持原本的83%。此外,進一步使用聚乙烯醇/氫氧化鉀膠態電解質將所得之NCS/rGO/CNT電極與活性碳電極結合組裝成可撓式全固態超級電容器。結果顯示此電容器在撓曲時仍維持其電化學性能,並可使燈泡發亮,證實NCS/rGO/CNT三維多孔複合材料確實可作為一良好的超級電容器材料。
This thesis concerns the fabrication of the three-dimensional (3-D) porous NiCo2S4 /graphene/carbon nanotube (NCS/rGO/CNT) composite and the investigation on its electrochemical performance for supercapacitors. This composite combines the good pseudocapacitor property of NiCo2S4 nanoparticles and the high specific surface area, conductivity and electrical double-layer property of reduced graphene oxide. Also, the presence of carbon nanotubes (CNTs) not only acts as the spacer to prevent reduced graphene oxide sheets from aggregation and restacking but also helps to build a conductive network to enhance the electron transport. In the presence of ethylenediamine and thiourea, 3-D porous NCS/rGO/CNT composite could be fabricated via the simultaneous NiCo2S4 nanoparticles synthesis and graphene oxide reduction by a facile one-step hydrothermal method. It was found that the addition of CNTs indeed could hinder the aggregation and restacking of NCS/rGO. However, the excess CNTs might affect the growth of NiCo2S4 nanoparticles and form larger aggregates, leading to poorer capacitor performance because of the decrease in surface area. In an electrolyte solution of 2 M KOH, the 3-D porous NCS/rGO/CNT composite with an appropriate amount of CNTs exhibited the specific capacitances of 1875, 1806, 1744, 1712 and 1679 F/g at the current densities of 1, 2, 3, 4 and 5 A/g, respectively; while just 1102, 999, 950, 903 and 865 F/g were obtained respectively in the absence of CNTs. Furthermore, about 83% of specific capacitance could be retained after 1600 cycles at a current density of 4 A/g. In addition, NCS/rGO/CNT electrode and active carbon (AC) electrode were combined to fabricate a flexible all-solid-state supercapacitor with PVA/KOH gel electrolyte. The resulting supercapacitor remained its electrochemical performance while bending and could turn on the red light-emitting diode (LED) light, demonstrating the NCS/rGO/CNT indeed could be used as a good supercapacitor material.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.
[2] C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, 321, 385-388.
[3] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine structure constant defines visual transparency of graphene, Science, 2008, 320, 1308.
[4] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol., 2008, 3, 206-209.
[5] C. N. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed. Engl., 2009, 48, 7752-7777.
[6] X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett., 2008, 8, 323-327.
[7] K. S. Novoselov, Graphene: Materials in the flatland (Nobel lecture), Angew. Chem. Int. Ed. Engl., 2011, 50, 6986-7002.
[8] A. H. C. Neto, K. Novoselov, Two-dimensional crystals: Beyond graphene, Mate. Express, 2011, 1, 10-17.
[9] C. Huang, C. Li, G. Shi, Graphene based catalysts, Energ. Environ. Sci., 2012, 5, 8848-8868.
[10] 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 2011, 33, 163-167.
[11] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano, 2010, 4, 43-48.
[12] T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud'Homme, L. C. Brinson, Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol., 2008, 3, 327-331.
[13] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 2008, 3, 270-274.
[14] J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, H. Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy, J. Am. Chem. Soc., 2011, 133, 6825-6831.
[15] L. Sun, H. Yu, B. Fugetsu, Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution, J. Hazard Mater., 2012, 203-204, 101-110.
[16] B. F. Machado, P. Serp, Graphene-based materials for catalysis, Catal. Sci. Technol., 2012, 2, 54-75.
[17] F. Schwierz, Graphene transistors, Nat. Nanotechnol., 2010, 5, 487-496.
[18] P. Avouris, C. Dimitrakopoulos, Graphene: Synthesis and applications, Mater. Today, 2012, 15, 86-97.
[19] H. Tetlow, J. Posthuma de Boer, I. J. Ford, D. D. Vvedensky, J. Coraux, L. Kantorovich, Growth of epitaxial graphene: Theory and experiment, Phys. Rep., 2014, 542, 195-295.
[20] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem., 2005, 15, 974-978.
[21] J. Y. Qu, F. Gau, Q. Zhou, Z. Y. Wang, H. Hu, B. B. Li, W. B. Wang, X. Z. Wang, J. S. Qiu, Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors, Nanoscale, 2013, 5, 2999-3005.
[22] C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, L. J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors, ACS Nano, 2010, 4, 5285-5292.
[23] H. Wang, X. Yuan, Y. Wu, H. Huang, X. Peng, G. Zeng, H. Zhong, J. Liang, M. Ren, Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Adv. Colloid Interface Sci., 2013, 195-196, 19-40.
[24] J. Cao, Q. Liu, D. Han, S. Yang, J. Yang, T. Wang, H. Niu, One-step hydrothermal synthesis of shape-controlled ZnS–graphene oxide nanocomposites, J. Mater. Sci: Mater. El., 2014, 26, 646-650.
[25] M. Azarang, A. Shuhaimi, R. Yousefi, S. P. Jahromi, One-pot sol-gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of methylene blue, RSC Adv., 2015, 5, 21888-21896.
[26] D. H. Youn, J. W. Jang, J. Y. Kim, J. S. Jang, S. H. Choi, J. S. Lee, Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing, Sci. Rep., 2014, 4.
[27] S. Bai, X. Shen, G. Zhu, M. Li, H. Xi, K. Chen, In situ growth of NixCo100-x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties, ACS Appl. Mater. Interfaces, 2012, 4, 2378-2386.
[28] 李俊龍, 趙崇翔, 林育威, 方家振, 2013超級電容器發展現況, 工研院電子報, 2013, 10211.
[29] 胡啟章, 超高電容器的發展專輯前言, 化工, 2013, 60, 1-2.
[30] G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors, Nano Energy, 2013, 2, 213-234.
[31] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 2000, 45, 2483-2498.
[32] M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 2004, 104, 4245-4270.
[33] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 2012, 41, 797-828.
[34] Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors, Small, 2012, 8, 1805-1834.
[35] H. J. Choi, S. M. Jung, J. M. Seo, D. W. Chang, L. Dai, J. B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy, 2012, 1, 534-551.
[36] Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 2015, 8, 702-730.
[37] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, et al., Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater., 2010, 22, 3906-3924.
[38] B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol., 2012, 221, 351-358.
[39] C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett., 2010, 10, 4863-4868.
[40] Z Z. Zhao, T. Mei, Y. Chen, J. Qiu, D. Xu, J. Wang, J. Li, X. Wang, One-pot synthesis of lightweight nitrogen-doped graphene hydrogels with supercapacitive properties, Mater. Res. Bull., 2015, 68, 245-253.
[41] S. Maiti, A. K. Das, S. K. Karan, B. B. Khatua, Carbon nanohorn-graphene nanoplate hybrid: An excellent electrode material for supercapacitor application, J. Appl. Polym. Sci., 2015, 132, 42118 (1-6).
[42] Y. Huang, M. Zhu, W. Meng, Y. Fu, Z. Wang, Y. Huang, Z. Pei, C. Zhi, Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: A large-area freestanding flexible substrate for supercapacitors, RSC Adv., 2015, 5, 33981-33989.
[43] H. C. Youn, S. M. Bak, M. S. Kim, C. Jaye, D. A. Fischer, C. W. Lee, X. Q. Yang, K. C. Roh, K. B. Kim, High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors, Chem. Sus. Chem., 2015, 8, 1875-1884.
[44] C. Wang, Y. Zhou, L. Sun, Q. Zhao, X. Zhang, P. Wan, J. Qiu, N/P-codoped thermally reduced graphene for high-performance supercapacitor applications, J. Phys. Chem. C, 2013, 117, 14912-14919.
[45] S. Y. Yang, K. H. Chang, Y. L. Huang, Y. F. Lee, H. W. Tien, S. M. Li, Y. H. Lee, C. H. Liu, C. C. M. Ma, C. C. Hu, A powerful approach to fabricate nitrogen-doped graphene sheets with high specific surface area, Electrochem. Commun., 2012, 14, 39-42.
[46] S. I. Kim, J. S. Lee, H. J. Ahn, H. K. Song, J. H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology, ACS Appl. Mater. Interfaces, 2013, 5, 1596-1603.
[47] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol., 2011, 6, 232-236.
[48] J. T. Mefford, W. G. Hardin, S. Dai, K. P. Johnston, K. J. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes, Nat. Mater., 2014, 13, 726-732.
[49] Z. Lei, Z. Chen, X. S. Zhao, Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance, J. Phys. Chem. C, 2010, 114, 19867-19874.
[50] Z. Yu, J. Thomas, Energy storing electrical cables: Integrating energy storage and electrical conduction, Adv. Mater., 2014, 26, 4279-4285.
[51] G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-Park, X. W. Lou, Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors, Energ. Environ. Sci., 2012, 5, 9453.
[52] H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H. S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials, Nano Res., 2011, 4, 729-736.
[53] H. Xia, J. Feng, H. Wang, M. O. Lai, L. Lu, MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors, J. Power Sources, 2010, 195, 4410-4413.
[54] S. Shi, C. Xu, C. Yang, Y. Chen, J. Liu, F. Kang, Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property, Sci. Rep., 2013, 3, 2598.
[55] Y. M. Wang, X. Zhang, C. Y. Guo, Y. Q. Zhao, C. L. Xu, H. L. Li, Controllable synthesis of 3D NixCo1−x oxides with different morphologies for high-capacity supercapacitors, J. Mater. Chem. A, 2013, 1, 13290.
[56] M. J. Deng, P. J. Ho, C. Z. Song, S. A. Chen, J. F. Lee, J. M. Chen, K. T. Lu, Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors, Energ. Environ. Sci., 2013, 6, 2178.
[57] F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A. K. Roy, Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance, Chem. Mater., 2011, 23, 4810-4816.
[58] J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries, Phys. Chem. Chem. Phys., 2011, 13, 15384-15402.
[59] J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys., 2011, 13, 15384-15402.
[60] J. W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M. B. Sassin, O. Crosnier, Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes, MRS Bull., 2011, 36, 513-522.
[61] M. Liu, W. W. Tjiu, J. Pan, C. Zhang, W. Gao, T. Liu, One-step synthesis of graphene nanoribbon-MnO2 hybrids and their all-solid-state asymmetric supercapacitors, Nanoscale, 2014, 6, 4233-4242.
[62] C. Qin, X. Lu, G. Yin, Z. Jin, Q. Tan, X. Bai, Study of activated nitrogen-enriched carbon and nitrogen-enriched carbon/carbon aerogel composite as cathode materials for supercapacitors, Mater. Chem. Phys., 2011, 126, 453-458.
[63] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7, 845-854.
[64] C. H. Chen, D. S. Tsai, W. H. Chung, Y. D. Chiou, K. Y. Lee, Y. S. Huang, Miniature asymmetric ultracapacitor of patterned carbon nanotubes and hydrous ruthenium dioxide, Nanotechnology, 2012, 23, 485402.
[65] H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Commun., 2013, 4, 1894.
[66] N. A. Alhebshi, R. B. Rakhi, H. N. Alshareef, Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes, J. Mater. Chem. A, 2013, 1, 14897.
[67] X. Ma, Y. Li, Z. Wen, F. Gao, C. Liang, R. Che, Ultrathin beta-Ni(OH)2 nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials, ACS Appl. Mater. Interfaces, 2015, 7, 974-979.
[68] B. Dong, H. Zhou, J. Liang, L. Zhang, G. Gao, S. Ding, One-step synthesis of free-standing α-Ni(OH)¬2 nanosheets on reduced graphene oxide for high-performance supercapacitors, Nanotechnology, 2014, 25, 435403.
[69] J. W. Lang, L. B. Kong, M. Liu, Y. C. Luo, L. Kang, Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon, J. Solid State Electrochem., 2009, 14, 1533-1539.
[70] P. V. Kamath, M. Dixit, L. Indira, A. K. Shukla, V. G. Kumar, N. Munichandraiah, Stabilized α‐Ni(OH)2 as electrode material for alkaline secondary cells, J. Electrochem. Soc., 1994, 141, 2956-2959.
[71] J. Han, K. C. Roh, M. R. Jo, Y. M. Kang, A novel co-precipitation method for one-pot fabrication of a Co-Ni multiphase composite electrode and its application in high energy-density pseudocapacitors, Chem. Commun., 2013, 49, 7067-7069.
[72] G. Chen, S. S. Liaw, B. Li, Y. Xu, M. Dunwell, S. Deng, H. Fan, H. Luo, Microwave-assisted synthesis of hybrid CoxNi1−x(OH)2 nanosheets: Tuning the composition for high performance supercapacitor, J. Power Sources, 2014, 251, 338-343.
[73] C. Yuan, J. Li, L. Hou, J. Lin, X. Zhang, S. Xiong, Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors, J. Mater. Chem. A, 2013, 1, 11145.
[74] Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, D. Xiao, Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor, ACS Appl. Mater. Interfaces, 2014, 6, 1773-1780.
[75] D. Cai, D. Wang, B. Liu, Y. Wang, Y. Liu, L. Wang, H. Li, H. Huang, Q. Li, T. Wang, Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications, ACS Appl. Mater. Interfaces, 2013, 5, 12905-12910.
[76] X. Yu, B. Lu, Z. Xu, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-3D graphene hybrid electrodes, Adv. Mater., 2014, 26, 1044-1051.
[77] Y. Xu, X. Wang, C. An, Y. Wang, L. Jiao, H. Yuan, Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors, J. Mater. Chem. A, 2014, 2, 16480-16488.
[78] X. Wu, L. Jiang, C. Long, T. Wei, Z. Fan, Dual support system ensuring porous Co-Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors, Adv. Funct. Mater., 2015, 25, 1648-1655.
[79] Z. Wu, Y. Zhu, X. Ji, NiCo2O4-based materials for electrochemical supercapacitors, J. Mater. Chem. A, 2014, 2, 14759.
[80] C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X. W. D. Lou, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors, Adv. Funct. Mater., 2012, 22, 4592-4597.
[81] Q. Lu, Y. Chen, W. Li, J. G. Chen, J. Q. Xiao, F. Jiao, Ordered mesoporous nickel cobaltite spinel with ultra-high supercapacitance, J. Mater. Chem. A, 2013, 1, 2331.
[82] H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors, Nanoscale, 2013, 5, 8879-8883.
[83] J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors, Nano Lett., 2014, 14, 831-838.
[84] W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang, X. Qian, Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes, J. Mater. Chem. A, 2014, 2, 9613-9619.
[85] H. Wan, J. Jiang, J. Yu, K. Xu, L. Miao, L. Zhang, H. Chen, Y. Ruan, NiCo2S4 porous nanotubes synthesis via sacrificial templates: High-performance electrode materials of supercapacitors, Cryst. Eng. Comm., 2013, 15, 7649-7651.
[86] T. Peng, Z. Qian, J. Wang, D. Song, J. Liu, Q. Liu, P. Wang, Construction of mass-controllable mesoporous NiCo2S4 electrodes for high performance supercapacitors, J. Mater. Chem. A, 2014, 2, 19376-19382.
[87] W. Du, Z. Zhu, Y. Wang, J. Liu, W. Yang, X. Qian, H. Pang, One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes, RSC Adv., 2014, 4, 6998-7002.
[88] Y. Xiao, Y. Lei, B. Zheng, L. Gu, Y. Wang, D. Xiao, Rapid microwave-assisted fabrication of 3D cauliflower-like NiCo2S4 architectures for asymmetric supercapacitors, RSC Adv., 2015, 5, 21604-21613.
[89] L. Yu, L. Zhang, H. B. Wu, X. W. Lou, Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties, Angew. Chem. Int. Ed. Engl., 2014, 53, 3711-3714.
[90] S. Peng, L. Li, C. Li, H. Tan, R. Cai, H. Yu, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors, Chem. Commun., 2013, 49, 10178-10180.
[91] H. Hayashi, Y. Hakuta, Hydrothermal synthesis of metal oxide nanoparticles in supercritical water, Materials, 2010, 3, 3794-3817.
[92] R. I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials, Chem. Soc. Rev., 2002, 31, 230-238.
[93] Y. Wang, X. Guan, L. Li, G. Li, pH-driven hydrothermal synthesis and formation mechanism of all BiPO4 polymorphs, Cryst. Eng. Comm., 2012, 14, 7907-7914.
[94] R. A. Laudise, E. Kaldes, Crystal growth of electronic materials, Elsevier Science, 1985.
[95] J. O. Eckert, C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, R. E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, J. Am. Ceram. Soc., 1996, 79, 2929-2939.
[96] J. Heinze, Cyclic voltammetry—“electrochemical spectroscopy”, Angew. Chem. Int. Ed. Engl., 1984, 23, 831-847.
[97] K. T. Kawagoe, J. B. Zimmerman, R. M. Wightman, Principles of voltammetry and microelectrode surface states, J. Neurosci. Methods, 1993, 48, 225-240.
[98] D. M. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of analytical chemistry, 8th ed, Thomson Brooks/Cole., 2004.
[99] S. Pan, J. Zhu, X. Liu, Preparation, electrochemical properties, and adsorption kinetics of Ni3S2/graphene nanocomposites using alkyldithiocarbonatio complexes of nickel(ii) as single-source precursors, New J. Chem., 2013, 37, 654-662.
[100] A. J. Bard, L. R. Faulkner, Electrochemical method fundamental and application, 2nd ed., John Wiley & Sons., 2000.
[101] K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective, J. Mater. Chem. A, 2014, 2, 10776-10787.
[102] 陸瑞東, 以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究, 國立成功大學化學工程學系, 2012.
[103] E. Barsoukov, J. R. Macdonald, Impedance spectroscopy theory, experiment and applications, 2nd ed., John Wiley & Sons, 2005.
[104] N. H. Kim, T. Kuila, J. H. Lee, Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application, J. Mater. Chem. A, 2013, 1, 1349-1358.
[105] S. Kaveri, L. Thirugnanam, M. Dutta, J. Ramasamy, N. Fukata, Thiourea assisted one-pot easy synthesis of CdS/rGO composite by the wet chemical method: Structural, optical, and photocatalytic properties, Ceram. Int., 2013, 39, 9207-9214.
[106] K. C. Hsu, D. H. Chen, Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced raman scattering substrate with high uniformity, Nanoscale Res Lett, 2014, 9, 1-9.
[107] X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Flexible solid-state supercapacitors: Design, fabrication and applications, Energ. Environ. Sci., 2014, 7, 2160-2181.