| 研究生: |
黃子軒 Huang, Tzu-Hsuan |
|---|---|
| 論文名稱: |
鎵粒子殼層改質及其在銅對銅接合之應用 The modification of gallium particle shell and its application for Cu-to-Cu interconnection |
| 指導教授: |
林士剛
Lin, Shih-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 銅對銅接合 、電子構裝 、鎵基次微米粒子 、殼層改質 、高可靠度封裝材料 |
| 外文關鍵詞: | Cu-to-Cu interconnection, Gallium particle, Advanced electronic packaging, IMC-free joints, High reliability joints |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究利用低熔點鎵金屬實現高可靠度之銅對銅接合結構,以解決傳統接合手法所面 臨的高溫接合晶圓翹取以及介金屬化合物所造成的可靠度問題。利用聲化學手法將液態鎵金 屬製備成次微米粒子,搭配介面活性劑五氟苯硫酚進行粒子殼層改質,提升粒子抗氧化能力, 減薄氧化鎵殼層厚度以提升接合面金屬擴散效能,並透過漿料轉移系統找出最佳參數,達成 精準定量鎵粒子的轉移總量,應用於銅對銅接合系統。此研究搭配工業級鍍鎳系統,利用電 鍍、無電鍍、濺鍍三種手法,製備 50 到 800 奈米厚的鎳度層,解析不同鎳製程及鎳厚度對於 接合系統的影響。化鍍鎳系統接合成功率低,歸因於非晶結構與表面雜質影響。濺鍍鎳呈現 柱結構,熱壓接合過程中液態鎵滲透進柱狀鎳之間的孔隙,達底層與銅基板相互擴散,然而 由於銅鎵之間的高擴散速率使得銅基板在界面處產生巨大孔洞,影響剪切強度與可靠度。電 鍍鎳系統與鎵粒子的搭配經過 10MPA 300 度的熱壓接合展示出最優異的剪切強度達 3.89MPa, 高溫保存以及 TCT 的可靠度測試則呈現剪切強度上升的趨勢,印證鎵粒子應用於銅對銅電子 構裝系統的的巨大潛力。
This research utilizes low melting point gallium metal to achieve high reliability copper-tocopper bonding structure to solve the reliability problems caused by high temperature bonding wafer warpage and intermetallic compounds faced by traditional bonding methods. The liquid gallium metal is prepared into submicron particles by sonochemical method, and the particle shell is modified with the surfactant pentafluorothiophenol to improve the anti-oxidation ability of the particles. The material transfer system using spin coating method finds the best parameters to achieve accurate quantification of the total amount of gallium particles transferred, which is applied to the copper-tocopper bonding system. This study is equipped with an industrial-grade nickel plating system, using three methods of electroplating, electroless plating, and sputtering to prepare a nickel layer with a thickness of 50 to 800 nm, and analyze the influence of different nickel processes and nickel thickness on the bonding system. The low bonding success rate of electroless nickel plating system is attributed to the influence of amorphous structure and surface impurities. The sputtered nickel exhibits a column structure. During the thermocompression bonding process, liquid gallium penetratesthe gaps between the columnar nickels, reaching the bottom layer and diffuse in copper substrate. However, due to the high diffusion rate between copper and gallium, forming holes affect shear strength and reliability. The electroplating nickel system showed the most excellent shear strength of 3.89MPa after thermocompression at pressure 10 MPa and 300°C. Thermal aging test and thermal cycling test showed increasing shear strength, confirming the great potential of gallium particles applied to copper-to-copper electronic packaging systems.
[1] Lau, J.H. 2011. Reliability of RoHS Compliant 2D & 3D IC Interconnects. New York: McGraw-Hill.
[2] Lau, J. H. (2021). Semiconductor advanced packaging. Springer Nature.
[3] Lau, J. H. (2013). Through-Silicon Vias for 3D Integration. McGraw-Hill Education.
[4] Lau, J. H. (2018). 3D Integration. In Fan-Out Wafer-Level Packaging (pp. 231-268). Springer, Singapore.
[5] Wen, W., Yang, S., Zhou, P., & Gao, S. Z. (2021). Impacts of COVID-19 on the electric vehicle industry: Evidence from China. Renewable and Sustainable Energy Reviews, 144, 111024.
[6] Chen, K. N., Tan, C. S., Fan, A., & Reif, R. (2003). Morphology and bond strength of copper wafer bonding. Electrochemical and Solid-State Letters, 7(1), G14.
[7] Liu, D., Kuo, T. Y., Liu, Y. W., Hong, Z. J., Chung, Y. T., Chou, T. C., ... & Chen, K. N. (2021). Investigation of low-temperature Cu–Cu direct bonding with Pt passivation layer in 3-D integration. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(4), 573-578.
[8] Jia-Juen Ong, Dinh-Phuc Tran, You-Yi Lin, Po-Ning Hsu, Chih Chen. (2022). Fabrication and Reliability of Quasi-single Crystalline Cu Joints Using Highly <111>-oriented Nanotwinned Cu. Electronic components and Technology Conference.
[9] Oh, C., Nagao, S., Kunimune, T., & Suganuma, K. (2014). Pressureless wafer bonding by turning hillocks into abnormal grain growths in Ag films. Applied Physics Letters, 104(16), 161603.
[10] Morita, T., Yasuda, Y., Ide, E., Akada, Y., & Hirose, A. (2008). Bonding technique using micro-scaled silver-oxide particles for in-situ formation of silver nanoparticles. Materials transactions, 49(12), 2875-2880.
[11] Zuo, Y., Shen, J., Hu, Y., & Gao, R. (2018). Improvement of oxidation resistance and bonding 125strength of Cu nanoparticles solder joints of Cu–Cu bonding by phosphating the nanoparticle. Journal of Materials Processing Technology, 253, 27-33.
[12] Sun, L., Chen, M. H., & Zhang, L. (2019). Microstructure evolution and grain orientation of IMC in Cu-Sn TLP bonding solder joints. Journal of Alloys and Compounds, 786, 677-687.
[13] Shao, H., Wu, A., Bao, Y., Zhao, Y., Liu, L., & Zou, G. (2017). Rapid Ag/Sn/Ag transient liquid phase bonding for high-temperature power devices packaging by the assistance of ultrasound. Ultrasonics Sonochemistry, 37, 561-570.
[14] Lee, C. K., Chang, T. C., Huang, Y. J., Fu, H. C., Huang, J. H., Hsiao, Z. C., ... & Kao, M. J. (2011, May). Characterization and reliability assessment of solder microbumps and assembly for 3D IC integration. In 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) (pp. 1468-1474). IEEE.
[15] Murayama, K., Aizawa, M., & Higashi, M. (2014, May). Study of electro-migration resistivity of micro bump using SnBi solder. In 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) (pp. 1166-1172). IEEE.
[16] Lin, W. P., Sha, C. H., & Lee, C. C. (2012). 40$mu {
m m} $ Flip-Chip process using Ag–in transient liquid phase reaction. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(6), 903-908.
[17] Lin, S.-k., C.-y. Yeh, and M.-j. Wang, On the formation mechanism of solid-solution Cu-toCu joints in the Cu/Ni/Ga/Ni/Cu system. Materials Characterization, 2018. 137: p. 14-23.
[18] Lin, S.-k., et al., High-strength and thermal stable Cu-to-Cu joint fabricated with transient molten Ga and Ni under-bump-metallurgy. Journal of Alloys and Compounds, 2017. 702: p. 561-567.
[19] Lin, S.-k., et al., Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits. Electronic Materials Letters, 2015. 11(4): p. 687-694.126
[20] Lin, S.-k., C.-l. Cho, and H.-m. Chang, Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples. Journal of Electronic Materials, 2014. 43(1): p. 204-211.
[21] Tu, P. L., Chan, Y. C., & Lai, J. K. L. (1997). Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, 20(1), 87-93.
[22] Sonochemical synthesis of nanomaterials. Chemical Society Reviews, 42(7), 2555-2567. (2013)
[23] Reversible Size Control of Liquid‐Metal Nanoparticles under Ultrasonication. Angewandte Chemie International Edition, 54(43), 12809-12813. (2015)
[24] Morris, N. J., Farrell, Z. J., & Tabor, C. E. (2019). Chemically modifying the mechanical properties of core–shell liquid metal nanoparticles. Nanoscale, 11(37), 17308-17318.
[25] Giurlani, W., Zangari, G., Gambinossi, F., Passaponti, M., Salvietti, E., Di Benedetto, F., ... & Innocenti, M. (2018). Electroplating for decorative applications: Recent trends in research and development. Coatings, 8(8), 260.
[26] Luo, J. K., Pritschow, M., Flewitt, A. J., Spearing, S. M., Fleck, N. A., & Milne, W. I. (2006). Effects of process conditions on properties of electroplated Ni thin films for microsystem applications. Journal of the Electrochemical Society, 153(10), D155.
[27] Motoyama, M., Fukunaka, Y., Sakka, T., & Ogata, Y. H. (2006). Effect of surface pH on electrodeposited Ni films. Journal of the Electrochemical Society, 153(7), C502.
[28] Nasirpouri, F., Sanaeian, M. R., Samardak, A. S., Sukovatitsina, E. V., Ognev, A. V., Chebotkevich, L. A., ... & Abdolmaleki, M. (2014). An investigation on the effect of surface morphology and crystalline texture on corrosion behavior, structural and magnetic properties of electrodeposited nanocrystalline nickel films. Applied surface science, 292, 795-805.
[29] Kilinc, Y., Unal, U., & Alaca, B. E. (2015). Residual stress gradients in electroplated nickel thin films. Microelectronic Engineering, 134, 60-67.127
[30] Sudagar, J., Lian, J., & Sha, W. (2013). Electroless nickel, alloy, composite and nano coatings–A critical review. Journal of alloys and compounds, 571, 183-204.
[31] Loto, C. A. (2016). Electroless nickel plating–a review. Silicon, 8(2), 177-186. [32]
[32] Vitry, V., & Bonin, L. (2017). Increase of boron content in electroless nickel-boron coating by modification of plating conditions. Surface and Coatings Technology, 311, 164-171.
[33] Thornton, J. A. (1986). The microstructure of sputter‐deposited coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(6), 3059-3065.
[34] Poulopoulos, P., Vlachos, A., Grammatikopoulos, S., Karoutsos, V., Ioannou, P. S., Bebelos, N., ... & Politis, C. (2015). Texture and magnetism of nanocrystalline Ni films and multilayers. In Journal of Nano Research (Vol. 30, pp. 68-77). Trans Tech Publications Ltd.
[35] Sharma, A., Mohan, S., & Suwas, S. (2016). The influence of deposition temperature on the structure, microstructure, morphology and magnetic properties of sputter deposited nickel thin films. Thin Solid Films, 619, 91-101
校內:2027-08-30公開