| 研究生: |
曾晹凱 Zeng, Yi-Kai |
|---|---|
| 論文名稱: |
蛇型流道內加裝擋板對釩液電池性能增益之研究 Study on Performance Enhancement of Vanadium Redox Flow Battery by Baffles in Serpentine Flow Channel |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 液流電池釩液 、電流密度 、電解液流速 、電壓效率 、庫倫效率 、能量效率 |
| 外文關鍵詞: | Redox flow battery, Vanadium, Current density, Electrolyte flow rates, Voltage efficiency, Coulombic efficiency, Energy efficiency |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以模擬釩液電池的三維模型,並以蛇型流道做為基礎,模擬出有加擋板和未加擋板的離子濃度變化及電壓變化,將擋板放置於流道中有益於提升電池效率,論文中也探討了擋板高度及個數的影響,在高度0.9h有較顯著的效應,而個數設為九較其他個數也有較顯著的效果,擋板在流道中的排列方式也有4種Case的比較,其中以Case 4的排列方式比起其它Case電壓及離子濃度有較好的反應。
本文實驗透過控制不同參數(電流密度、電解液流速)探討電池的電壓效率、庫倫效率及能量效率,並利用三種流道分別是空流道、蛇型流道及有加擋板的蛇型流道,實驗中發現在較低的電流密度(40mA/cm2)及調高電解液流速(300ml/min)會有較好的能量效率,而在相較於空流道,蛇型流道的能量效率較空流道提升了3.24 %,Case 4 的能量效率相較於蛇型流道提升了3.5 %。
This thesis establishes a vanadium redox flow battery 3-D numerical model. Simulate the ion concentration change and the terminal voltage with adding the baffles based on the serpentine flow path. The results show that the adding the baffles will affect the battery efficiency.
The author also did research on the effect of the height of the baffles and the number. Setting the height of the baffles of 0.9h and number with 9 has a better effect for the battery. There are four kind of cases by installing 9 baffles and 4 arranging types in the entire serpentine flow. Case 4 has a better voltage and ion concentration reaction than the other cases.
The unit tests cell performances are analyzed on the voltage efficiency, coulombic efficiency and energy efficiency under different parameters. There are three kinds of channels, without flow field, with serpentine channel, and serpentine channel adding baffles. It can be found from the experiment that the better energy efficiency will occur at the lower current density (40 mA/cm2) and higher flow rate (300 ml/min). Compared with the channel without flow field, the smooth channel has a higher energy efficiency about 3.24 %. In addition, Case 4 has a higher energy efficiency about 3.5 % than the smooth channel.
[1] L.J. Fang, “The book of 2010 energy technique industry”, Bureau of economic, 2010.
[2] F.C. Lee, “New energy”, Hsin Wen Ging published corporation, Taipei 2009.
[3] J.J. Huang, “Fuel cell”, Chun Hua books, 2007.
[4] J.N. Baker, Collinson A, “Electrical energy storage at the turn of the millennium”, Power Engineering, Vol.13, pp.107-112, 1999.
[5] Z. Yang, Liu J, Baskaran S, Imhoff CH, Holladay JD, “Enabling renewable energy-and the future grid-with advanced electricity storage. JOM, Vol: 62, pp.14–23, 2010.
[6] B. Turker, S.A. Klein, E.M. Hammer, B. Lenz, L. Komsiysk, “Modeling a vanadium redox flow battery system for large scale applications”, Energy Conversion and Management, Vol.66, pp.26-32, 2013.
[7] J. Chen, Z. Xu, B. Li, “Research on the characteristics of the vanadium redox-flow battery in power system applications”, Journal of Power Sources, Vol.241, pp.396-399, 2013.
[8] M. Schreibera, M. Haeerea, A. Whiteheadb, H. Bucsicha, M.Dradschitza, E. Seiferta, P. Tymciw, “Pratical and commericial issues in the design and manufacture of vanadium flow batteries”, Journal of Power Sources, Vol.206, pp.483-489, 2012.
[9] C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez-Garcia, D.A. Szanto, F.C. Walsh, “Redox Flow cells for energy conversion”, Journal of Power Sources, Vol.160, pp.716-732, 2006
[10] Y.K. Fuh, T.C. Chang, J.P. Zhang “Electroless Plating on Porous Carbon Felts in Redox Flow Batteries and Thickness Effect on the Electrical and Mechanical Properties”, International Journal of Electrochemistry Society, Vol.8, pp.8989-8999, 2013.
[11] M. Yue, Z. Lv, Q. Zheng, X. Li, H. Zhang, “Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries”, Applied Energy, Vol.235, pp.495-508, 2019.
[12] L.D. Brown, T.P. Neville, R. Jervis, T.J. Mason, P.R. Shearing, D.J.L. Brett, “The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries”, Journal of Energy Storage, Vol.8, pp.91-98, 2016.
[13] T.J. Latha, S. Jayanti, “Ex-situ experimental studies on serpentine flow field design for redox flow battery systems”, Journal of Power Sources, Vol. 248, pp.140-146, 2014.
[14] H. Tain, R.Y. Chein, K.L. Hsueh, C.H. F.H. Tsau, “Design and modeling of electrolyte pumping power reduction in redox flow cells”, Rare Metals, Vol. 30, pp.16-21, 2011.
[15] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang. S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, International Journal of Hydrogen Energy, Vol. 37, pp. 13060-13066, 2012.
[16] C.M. Huang, S.S. Shy, C.H. Lee, “On flow uniformity in various interconnects and its influence to cell performance of planar SOFC", Journal of Power Sources, Vol.183, pp. 205-213, 2008.
[17] C.M. Huang, S.S. Shy. H.H. Li, C.H. Lee, “The impact of flow distributors on the performance of planar solid oxide fuel cell”, Journal of Power Sources, Vol.195, pp. 6280-6286, 2010.
[18] D.S. Aaron, Q. Liu, Z. Tang, G.M. Grim, A.B. Papandrew, ATurban, T.A. Zawodzinski, M.M. Mench, “Dramatic performance gains in vanadium redox flow batteries though modified cell architecture”, Journal of Power Sources, Vol.206, pp.450–453, 2012.
[19] Q. Xu, T.S. Zhao, P.K. Leung, “Numerical investigations of flow field designs for vanadium redox flow batteries”, Applied Energy, Vol.105, pp.47–56, 2012.
[20] Q. Xu, T.S. Zhao, C. Zhang, “Performance of a vanadium redox flow battery with and without flow fields”, Electrochimica Acta, Vol.142, pp.61–67, 2014.
[21] X. Ke, J.M. Prahl, J.I. Alexander, R.F. Savinell, “Mathematical modeling of electrolyte flow in a segment of flow channel over porous electrode layered system in vanadium flow battery with flow field design”, Electrochimica Acta, Vol.233, pp.124-134, 2017.
[22] S. Maurya, P.T. Nguyen, Y.S. Kim, Q. Kang, R. Mukundan, “Effect of flow field geometry on operating current density, capacity and performance of vanadium redox flow battery”, J. Power Sources, Vol.404, pp.20-27, 2018.
[23] T.J. Latha, S. Jayanti, “Ex-situ experimental studies on serpentine flow field design for redow flow battery systems”, Journal of Power Sources, Vol.248, pp.140-146, 2014.
[24] G.Y. Li, M.H. Liu, “The Electrochemical Study of Optimized Single-Cell for All Vanadium”, Fu Jen University, Thesis of Department of Chemistry, 1999.
[25] X. Ke, J.M. Prahl, J.I.D. Alexander, Robert F. Savinell, “Redox flow batteries with serpentine flow fields: Distributions of electrolyte Flow reactant penetration into the porous carbon electrodes and effects on performance”, Journal of Power Sources, Vol.384, pp.295-302, 2018.
[26] X. Ke, J.M. Prahl, J.I.D. Alexander, Robert F. Savinell, “A Simple Analytical Model of Coupled Single Flow Channel over Porous Electrode in Vanadium Redox Flow Battery with Serpentine Flow Channel”, J. Power Sources, Vol.288, pp.308-313, 2015.
[27] M. Messaggi, P. Canzi, R. Mereu, A. Baricci, F. Inzoli, A.Casalegno, M. Zago, “Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation”, Applied Energy, Vol.228, pp.1057–1070, 2018.
[28] M. A. Yasiri, J. Park, “A novel cell design of vanadium redox flow batteries for enhancing energy and power performance”, Applied Energy, Vol.222, pp.530–539, 2018.
[29] S. Kumar, S. Jayanti, “Effect of flow field on the performance of an all-vanadium redox flow battery”, Journal of Power Sources, Vol.307, pp.782-787, 2016.
[30] H.C. Liu, W.M. Yana, C.Y. Soong, F. Chen, “Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell”, Journal of Power Sources, Vol. 142, pp.125–133, 2005.
[31] C.Y. Soonga, W.M. Yan, C.Y. Tseng, H.C. Liu, F. Chen, H.S. Chu, “Analysis of reactant gas transport in a PEM fuel cell with partially blocked fuel flow channels”, Journal of Power Sources, Vol.143, pp.36–47, 2005.
[32] H.W. Gu, H.W. Wu, “Effects of modified flow field on optimal parameters estimation and cell performance of a proton exchange membrane fuel cell with the Taguchi method”, Int. J. Hydrogen Energy, Vol. 37, pp.1613-1627, 2012.
[33] S.W. Perng, H.W. Wu, “A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEM fuel cells”, Applied Energy, Vol 143, pp. 81-95, 2015.
[34] H. Heidary, M.J. Kermani, S.G. Advani, A.K. Prasad, “Experimental investigation of in-line and staggered blockages in parallel flow field channels of PEM fuel cells”, Int. J. Hydrogen Energy, Vol. 41, pp. 6885-6893, 2016.
[35] D.Y. Kung, H.W. Wu, “Study on effect of ribs in flow channel on high-temperature and relative humidity on low-temperature PEM fuel cells”, NCKU, Systems and Naval Mechatronic Engineering, 2016.
[36] E. Agar, A. Benjamin, C.R. Dennison, D. Chen, M.A. Hickner, E.C. Kumbur, “Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents”, Journal of Power Sources, Vol.246, pp.767–774, 2014.
[37] K.K. Dong, S.J. Yoon, J. Lee, “Parametric study and flow rate optimization of all-vanadium redox flow batteries”, Applied Energy, Vol.228, pp.891–901, 2018.
[38] M. Skyllas-Kazacos, L. Goh, “Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery”, Journal of Membrane Science, Vol.399-400, pp.43–48, 2012.
[39] A. Tang, J. Bao, M. Skyllas-Kazacos, “Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery”, Journal of Power Sources, Vol.196, pp.10737–10747, 2011.
[40] M. Zhu, Q. Wu, X. Chi, Y. Luo, “Simulation of All-Vanadium Redox Flow Batteries based on COMSOL”, 29th Chinese Control and Decision Conference (CCDC), 2017.
[41] X.G. Yang, Q. Ye, P. Cheng, T. S. Zhao, “Effects of the electric field on ion crossover in vanadium redox flow Batteries”, Applied Energy, Vol.145, pp.306–319, 2015.
[42] D.J. You, H.M. Zhang, J. Chen, “A simple model for the vanadium redox battery”, Electrochem Acta, Vol.54, pp.6827–6836, 2009.
[43] X.K. Ma, H.M. Zhang, F Xing, “A three-dimensional model for negative half cell of the vanadium redox flow battery”, Electrochem Acta, Vol.58, pp.238–246, 2011.
[44] K.K. Dong, J.Y. Sang, J. Lee, S. Kim, “Parametric study and flow rate optimization of all-vanadium redox flow Batteries”, Applied Energy, Vol. 228, pp.891–901, 2018.
[45] F. Rahman, M. Skyllas-Kazacos, “Vanadium redox battery: positive half-cell electrolyte studies”, Journal of Power Sources, Vol.189, pp.1212–1219, 2009.
[46] M. Vijayakumar, L. Li, G. Graff, J. Liu, H. Zhang, Z. Yang, “Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries”, Journal of Power Sources, Vol.196, pp.3669–3672, 2011.
[47] H.J. Lee, N.H. Choi, H. Kim, “Analysis of concentration polarization using UV-visible spectrophotometry in a vanadium redox flow battery”, J Electrochem Soc, Vol .161, pp.1291-1296, 2014.
[48] R.E. Meredith, C.W. Tobias, “Advances in electrochemical science and engineering”, New York: Interscience, 1962.
[49] K. W. Knehr, E.C. Kumbur, “Open circuit voltage of vanadium redox flow batteries: Discrepancy between models and experiments”, Electrochemistry Communications, Vol.13, pp.342–345, 2011.
[50] F.P. ncropra, A.S. Lavine, T.L. Bergman, D.P. DeWitt, “Fundamentals of heat and mass transfer”, John Wiley and Sons Inc, New Jersey, 2011.
[51] R.B. Abernethy, R.P. Benedict, R.B. Dowdell, “ASME measurement uncertainty, Transactions of the ASME”, J. Fluids Engineering, Vol. 107, pp. 161-164, 1985.
[52] M.R. Mohamed, PK. Leung b, M.H. Sulaiman, “Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system”, Applied Energy, Vol. 137, pp.402–412, 2015.