簡易檢索 / 詳目顯示

研究生: 蕭欣宜
Hsiao, Hsin-Yi
論文名稱: 台灣東南地區弧陸碰撞初期發震構造之地震分析
Seismogenic structures of initial arc-continent collision in Taiwan orogeny
指導教授: 李恩瑞
Lee, En-Jui
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 造山運動弧陸碰撞初期台灣東南海域呂宋島弧斜碰撞
外文關鍵詞: Taiwan orogeny, Initial arc-continent collision, Taiwan southeast sea area, Oblique collision of Luzon arc
相關次數: 點閱:73下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣為歐亞大陸板塊與菲律賓海板塊的呂宋島弧斜碰撞所產生之島嶼,在同一時間展現不同造山運動的演化階段。其中以台灣南部海域地體構造為初期弧陸碰撞(Initial arc - continent collision)。至今前人對於台灣東南海域的解釋較多是利用震測剖面,僅能看到10公里內較淺層的構造,對於深部的活動斷層還沒有足夠的解釋,因次我們的目的是利用地震分布位置來判斷更深層的發震構造和構造特性。本研究利用中央氣象局(CWB)的地震目錄資料,選取發生在台灣東南海域初期碰撞地區之地震資料,採用氣象局地震目錄挑選的P波及S波到時,及波形交叉比對(cross-correlation)求得地震間P波、S波的相對到時差,利用hypoDD重新定位後可得到更精確的地震相對位置。為了解初期弧陸碰撞的發震構造(seismogenic structure),本研究挑選芮氏規模(ML)大於 3.5的地震事件,濾波後挑選信噪比較大的P波、S波及表面波,採用波形反演求解地震震源參數,避免P波初動解誤判的缺點,我們的方法可提供更精確震源機制解,判斷斷層與構造來分析幾個區域的活動斷層。
    本研究結果顯示,在綠島東北部深度約10~25公里處有向東傾逆斷層;台東峽谷與台東海槽交界在深度約0~30公里處,有高角度向東北傾的右移斷層;綠島西邊的台東海槽內部,深度約20~30公里處有向東傾的逆衝活動斷層,其延伸位置可能為往西邊靠近台東,往北可跟花東縱谷連接,越靠近陸地斷層角度越高,深度變淺。

    Our study is aim to obtain the characteristics of the seismogenic structure in the geometric space. The stations in Taiwan are densely distributed, and seismic data are available in both Lutao and Lanhsu. When we’re selecting P-wave and S-wave arrival time with the earthquakes catalog from Central Weather Bureau Seismic Network (CWBSN), we can improve the accuracy of relative travel time difference by calculating the cross-correlation of their travel time difference. We use Double-Difference Relocation (HypoDD) to provide a more accurate relative position of the earthquake. And the earthquake magnitude greater than 3.5 is selected. And we inverse the hypocenter parameter (including the time, location, depth, and seismic moment) with the waveform generated by the three-dimensional velocity model. Relative to the one-dimensional velocity model currently used by the meteorological bureau, this method can get more accurate focal mechanism.
    Finally, the spatial distribution linear structure of the relocated seismic source is integrated to determine the fault plane of the focal mechanism to analyze the seismogenic structure of the southeastern Taiwan. The purpose of this research is to understand the seismogenic structure and structural characteristics of the initial arc-continent collision in southeastern Taiwan by verifying the results of previous studies and comparing the main active fault space and depth.

    摘要 i Extended Abstract ii 誌謝 xi 目錄 xii 圖目錄 xv 表目錄 xvii 第一章 前言 1 1.1 研究動機與目的 1 1.2 區域背景 2 1.2.1 隱沒到弧陸碰撞簡介 2 1.2.2 馬尼拉隱沒系統 4 第二章 文獻回顧 5 2.1 台灣東南部海域地形構造 5 2.1.1 北呂宋海槽(North Luzon Trough) 5 2.1.2 恆春海脊(Hengchun Ridge) 6 2.1.3 南縱海槽(Southern Longitudinal Trough) 6 2.1.4 花東海脊(Huatung Ridge) 8 2.1.5 台東海槽(Taitung Trough) 8 2.1.6 綠島-蘭嶼海脊(Lutao - Lanhsu Ridge) 8 2.1.7 台東峽谷(Taitung Canyon) 10 2.2 台灣東部陸上地質構造 13 2.2.1 海岸山脈(Coastal Range) 13 2.2.2 花東縱谷(Longitudinal Valley) 13 第三章 資料與研究方法 16 3.1 資料 16 3.1.1 研究區域 16 3.1.2 地震測站 16 3.1.3 地震波形處理流程 19 3.2 利用HypoDD(Double-Difference Relocation)重新定位地震 20 3.2.1波形交對比(cross-correlation) 21 3.2.2 HypoDD重要演算公式 22 3.2.3 速度模型 24 3.3 利用波形反演震源機制解 25 3.3.1 震源機制解 26 3.3.2 波形反演(Waveform inversion) 26 3.3.3其他計算震源機制解之方法原理 27 第四章 結果 35 4.1東南海域震源機制解及重定位地震剖面分布位置 35 4.2 用Bootstrap法評估最小平方誤差 35 4.3 南縱海槽內剖面構造特徵 38 4.4 台東海槽、台東峽谷間剖面構造特徵 41 4.5 花東海脊與綠島海脊之間(台東海槽內)剖面構造特徵 44 4.6 綠島海脊東北方剖面構造特徵 47 4.7 花東海脊東側剖面構造特徵(活躍碰撞期) 50 4.8 近海岸山脈處剖面構造特徵(活躍碰撞期) 53 第五章 討論 57 5.1 南縱海槽內構造 57 5.2 台東海槽、台東峽谷間構造 57 5.3 花東海脊與綠島海脊之間(台東海槽內)構造 57 5.4 綠島海脊東北方構造 58 5.5 花東海脊東側構造(活躍碰撞期) 58 5.6 近海岸山脈處構造(活躍碰撞期) 58 第六章 結論 59 第七章 參考文獻 60

    Bachman, S. B., S. D. Lewis, and W. J. Schweller, 1983, Evolution of a forearc basin, Luzon central valley, Philippines: AAPG Bulletin, v. 67, p. 1143-1162.
    Billings, S. D., 1994, Simulated annealing for earthquake location: Geophysical Journal International, v. 118, p. 680-692.
    Chang, C., J. Angelier, C. Huang, and C. Liu, 2001, Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision: Geological Magazine, v. 138, p. 633-651.
    Cheng, W.-B., and C.-s. Wang, 2001, Seismogenic zones in the convergent margin, eastern Taiwan and its implications in the Luzon forearc deformation: Terrestrial, Atmospheric and Oceanic Sciences, p. 269-286.
    Ching, K. E., R. J. Rau, K. M. Johnson, J. C. Lee, and J. C. Hu, 2011, Present‐day kinematics of active mountain building in Taiwan from GPS observations during 1995–2005: Journal of Geophysical Research: Solid Earth, v. 116.
    Efron, B., 1982, The jackknife, the bootstrap, and other resampling plans, v. 38, Siam.
    Hao, K., Y.-M. Wu, C.-H. Chang, J.-C. Hu, and W.-S. Chen, 2004, Relocation of eastern Taiwan earthquakes and tectonic implications: Terrestrial.
    Hsu, T., 1956, Geology of the Coastal Range, eastern Taiwan: Bull. Geol. Surv. Taiwan, v. 8, p. 39-63.
    Huang, C.-Y., W.-H. Chen, M.-H. Wang, C.-T. Lin, S. Yang, X. Li, M. Yu, X. Zhao, K.-M. Yang, and C.-S. Liu, 2018, Juxtaposed sequence stratigraphy, temporal-spatial variations of sedimentation and development of modern-forming forearc Lichi Mélange in North Luzon Trough forearc basin onshore and offshore eastern Taiwan: An overview: Earth-Science Reviews, v. 182, p. 102-140.
    Huang, C.-Y., C.-T. Shyu, S. B. Lin, T.-Q. Lee, and D. D. Sheu, 1992, Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for Late Neogene evolution of the Coastal Range: Marine Geology, v. 107, p. 183-212.
    Huang, C.-Y., and Y. Yin, 1990, Bathymetric ridges and troughs in the active arc-continent collision region off southeastern Taiwan: Proc. Geol. Soc. China, p. 351-372.
    Huang, C.-Y., P. B. Yuan, C.-W. Lin, T. K. Wang, and C.-P. Chang, 2000, Geodynamic processes of Taiwan arc–continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica: Tectonophysics, v. 325, p. 1-21.
    Huang, H.-H., Y.-M. Wu, X. Song, C.-H. Chang, S.-J. Lee, T.-M. Chang, and H.-H. Hsieh, 2014, Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny: Earth and Planetary Science Letters, v. 392, p. 177-191.
    Kao, H., S. s. J. Shen, and K. F. Ma, 1998, Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc‐Taiwan region: Journal of Geophysical Research: Solid Earth, v. 103, p. 7211-7229.
    Kao, H. H., Gwo-Ching 2000, Transition from oblique subduction to collision in the northern Luzon arc‐Taiwan region: Constraints from bathymetry and seismic observations: Journal of geophysical research, v. 105, p. 3059-3079.
    Kuochen, H., Y.-M. Wu, C.-H. Chang, J.-C. Hu, and W.-S. Chen, 2004, Relocation of eastern Taiwan earthquakes and tectonic implications: Terrestrial.
    Lee, E.-J., P. Chen, T. H. Jordan, and L. Wang, 2011, Rapid full-wave centroid moment tensor (CMT) inversion in a three-dimensional earth structure model for earthquakes in Southern California: Geophysical Journal International, v. 186, p. 311-330.
    Lee, S.-J., W.-T. Liang, H.-W. Cheng, F.-S. Tu, K.-F. Ma, H. Tsuruoka, H. Kawakatsu, B.-S. Huang, and C.-C. Liu, 2013, Towards real-time regional earthquake simulation I: Real-time moment tensor monitoring (RMT) for regional events in Taiwan: Geophysical Journal International, v. 196, p. 432-446.
    Lewis, J., D. J. O’Hara, and R.-J. Rau, 2015, Seismogenic strain across the transition from fore‐arc slivering to collision in southern Taiwan: Journal of Geophysical Research. Solid Earth, v. 120, p. 4539-4555.
    Lundberg, N., D. L. Reed, C.-S. Liu, and L. Jr Lieske, 1992, Structural Controls on Orogenic Sedimentation Submarine Taiwan Collision: Acta Gelological Taiwanica, p. 131-140.
    Lundberg, N., D. L. Reed, C.-S. Liu, and J. Lieske, 1997, Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan: Tectonophysics, v. 274, p. 5-23.
    Malavieille, J., S. E. Lallemand, S. Dominguez, A. Deschamps, C.-Y. Lu, C.-S. Liu, P. Schnürle, J.-P. Hsu, S.-Y. Liu, and J.-C. Sibuet, 2002, Arc-Continent collision in Taiwan: New marine observations and tectonic evolution.
    Malavieille, J., and G. Trullenque, 2009, Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling: Tectonophysics, v. 466, p. 377-394.
    Reed, D. L., N. Lundberg, C.-S. Liu, and B.-Y. Kuo, 1992, Structural Relations along the Margins of the Offshore Taiwan Accrentionary Wedge: Implications for Accretion and Crustal Kinematics: Acta Gelological Taiwanica, p. 105-122.
    Shearer, P. M., 1997, Improving local earthquake locations using the L1 norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence: Journal of Geophysical Research: Solid Earth, v. 102, p. 8269-8283.
    Shyu, J. B. H., Y.-M. Wu, C.-H. Chang, and H.-H. Huang, 2011, Tectonic erosion and the removal of forearc lithosphere during arc-continent collision: Evidence from recent earthquake sequences and tomography results in eastern Taiwan: Journal of Asian Earth Sciences, v. 42, p. 415-422.
    Sibuet, J.-C., S.-K. Hsu, and A. Normand, 2004, Tectonic significance of the Taitung Canyon, Huatung Basin, east of Taiwan: Marine Geophysical Researches, v. 25, p. 95-107.
    Taylor, B., and D. E. Hayes, 1983, Origin and history of the South China Sea basin: The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, p. 23-56.
    Waldhauser, F., and W. L. Ellsworth, 2000, A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California: Bulletin of the Seismological Society of America, v. 90, p. 1353-1368.
    Wu, Y.-M., L. Zhao, C.-H. Chang, and Y.-J. Hsu, 2008, Focal-mechanism determination in Taiwan by genetic algorithm: Bulletin of the Seismological Society of America, v. 98, p. 651-661.
    Yu, H.-S., and L.-Y. Chiao, 1994, The physiography off southern Taiwan coast: Morphology and its implication for trench-continent convergence: Acta Oceanographica Taiwanica, p. 21-37.
    Yu, S.-B., H.-Y. Chen, and L.-C. Kuo, 1997, Velocity field of GPS stations in the Taiwan area: Tectonophysics, v. 274, p. 41-59.
    Zhao, L., P. Chen, and T. H. Jordan, 2006, Strain Green’s tensors, reciprocity, and their applications to seismic source and structure studies: Bulletin of the Seismological Society of America, v. 96, p. 1753-1763.
    何春蓀, 1982, 台灣地體構造的演變-台灣地體構造圖說明書, 中華民國經濟部, 110 頁.
    林聖心, 2010, 北呂宋島弧東側之構造特徵, 國立臺灣大學, 台北市, 79 p.
    陳麗雯, 2006, 台灣東南海域弧前盆地之構造演化特徵, 國立臺灣大學, 台北市, 91 p.
    鄧屬予, 2007, 臺灣第四紀大地構造, 經濟部中央地質調查所特刊.

    下載圖示 校內:2024-08-22公開
    校外:2024-08-22公開
    QR CODE