| 研究生: |
鄭閔 Cheng, Min |
|---|---|
| 論文名稱: |
考量生態指標與水文指標關係之新店溪流域水利設施最佳營運策略 The Basin-scale Optimal Operating Strategies for Incorporating Ecology- Flow Relationship in Hsintien Creek Basin, Taiwan |
| 指導教授: |
蕭政宗
Shiau, Jenq-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 水文指標 、生態指標 、環境流量 、多元線性迴歸 、新店溪流域 |
| 外文關鍵詞: | hydrologic indicators, ecological indicators, multiple linear regression, environmental flow, Hsintien Creek basin |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在流域中的水資源開發,過去多以增加人類經濟效益為主,例如供水、發電及防洪等,由於水利設施攔蓄及引取水源會使河川的天然流制改變,同時影響水域生態環境,因此在人類需求與維護水域生態環境間能達到兩者平衡的水資源管理策略是目前重要的議題之一。但水域生態現況資料取得不易,多使用間接的水文指標改變度來替代,以尋求減緩各河段受生態環境影響程度的水利設施營運方式,然而對水域環境的影響缺乏實際的對照,可能會與實際情況有所落差,故本研究以水域現場採集的生態資料結合水文改變流制來改善此問題。本研究將以新店溪流域為研究區域,新店溪流域目前有七個大小型堰壩興建於各河段以提供大台北地區生活用水,並兼具水力發電與防洪的功能。本研究利用流域模擬模式計算32項水文指標在不同河段受到水利設施營運的影響,再以新店溪流域內五個河段的底棲無脊椎動物生態調查資料,轉變為對生態環境影響具代表性的生態指標(生物豐富度、生物多樣性及生物均勻性),以建立水域生態與水文指標的多元線性迴歸方程式,並將此關係式整合於流域模式中,配合多準則決策以尋求流域水利設施之最佳營運策略。本文比較無環境流量方案、現況營運方案及最佳營運方案,分析結果顯示最佳營運方案較其他方案改善大多數人類用水指標,並能減緩對河段生態指標的衝擊。
Water-resources developments such as impoundment and streamflow diversion by water-resources facilities would alter streamflow natural variability and threaten ecosystem diversity and riverine health. Finding a balance between human and environmental needs becomes a challenge task in water-resources management. In this study, a relationship between ecological indicators and hydrological indicators are constructed by multiple linear regression. This relationship is incorporated into a basin-scale model and applied to Hsintien Creek basin located in northern Taiwan to derive the optimal operating strategies. The sampled macroinvertebrates data at various sites are transformed into ecological indicators which include Margalet’s diversity index, Shannon-Wiener’s diversity index and Pielou’s evenness index. A total of 8 human indicators are used to evaluate performance of water-resources facilities for water supply, hydropower generation, and flood mitigation. These two types of indicators are integrated into an overall indicator using technique for order performance by similarity to ideal selection (TOPSIS) to derive the optimal operating strategies. The results show that the current scenario is slightly better than the no environmental flow scenario. The optimal scenario has great improvements in most of human indicators and reduce hydrologic-alteration impacts.
Acreman, M.C., Overton, I.C., King, J., Wood, P.J., Cowx, I.G., Dunbar, M.J., Kendy, E., Young W.J. (2014). The changing role of ecohydrological science in guiding environmental flows. Hydrological Sciences Journal, 59 (s 3-4), 433-450
Armanini, D.G., Chaumel, I.A., Monk, W.A., Marty, J., Smokorowski, K., Power, M. and Baird, D.J. (2014). Benthic macroinvertebrate flow sensitivity as a tool to assess effects of hydropower related ramping activities in streams in Ontario (Canada). Ecological Indicators. 46, 466–476
Arthington, A.H., Rolls, R.J., Sternberg, D., Mackay, S.J. and James, C.S. (2014). Fish assemblages in subtropical rivers: Low-flow hydrology dominates hydro-ecological relationships. Hydrological Sciences Journal, 59(3-4), 594–604.
Bandeira, B., Jamet, J. L., Jamet, D. and Ginoux, J. M. (2013). Mathematical convergences of biodiversity indices. Ecological Indicators, 29, 522–52
Beaugrand, G., Reid, P.C., Ibanez, F., Lindley, J.A., Edwards M. (2002). Reorganization of 258 North Atlantic marine copepod biodiversity and climate. Science, 296, 1692–1694
Bibi, F. and Ali, Z. (2013). Measurement of diversity indices of avian communities at taunsa barrage wildlife sanctuary,.pakistan.The Journal of Animal & Plant Sciences, 23(2), 469-474
Boyle, T.P., Smillie, G.M., Anderson, J.C. and Beeson, D.R. (1990). A sensitivity analysis of Nine diversity and Seven similarity indices. Research Journal of the Water Pollution Control Federation, 62(6), 749–762
Bunn, SE; Arthington, AH (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management. 30(4), 492–507
Cardwell H., Jager H. I., Sale M. J. (1996). Designing instream flows to satisfy fish and human water needs. Journal of Water Resources Planning and Management, 122(5), 356-363
Chen, Y.D., Yang, T., Xu, C.-Y., Zhang, Q., Chen, X. and Hao, Z.-C. (2008). Hydrologic alteration along the middle and upper east river (Dongjiang) basin, south china: A visually enhanced mining on the results of RVA method. Stochastic Environmental Research and Risk Assessment, 24(1), 9–18.
Extence, C.A., Balbi, D.M. and Chadd, R.P. (1999). River flow indexing using British benthic macroinvertebrates: A framework for setting hydroecological objectives. Regulated Rivers: Research & Management, 15(6), 545–574
Gorla, L., Perona, P. (2013). On quantifying ecologically sustainable flow releases in a diverted river reach. Jounal of Hydrology. 489, 98–107
Hughes D. A., Mallory S. J. L. (2008). Including environmental flow requirements as part of real‐time water resource management. River Research and Applications, 24(6), 852-861
Hughes D. A., O'Keeffe J., Smakhtin V., King J. (1997). Development of an operating rule model to simulate time series of reservoir releases for instream flow requirements. Water SA, 23(1), 21-30
Hughes D. A., Ziervogel G. (1998). The inclusion of operating rules in a daily reservoir simulation model to determine ecological reserve releases for river maintenance. Water SA, 24(4), 293-302
Hwang C. L., Yoon K. (1981). Multiple Attribute Decision Making, Springer, ISBN 978-3-540-10558-9
Jowett, I.G. (1997). Instream flow methods: A comparison of approaches, Regulated Rivers: Research & Management, 13(2), 115–127
Kennen, J.G., Riskin, M.L. and Charles, E.G. (2014). Effects of streamflow reductions on aquatic macroinvertebrates: Linking groundwater withdrawals and assemblage response in southern new jersey streams, USA. Hydrological Sciences Journal, 59(3-4), 545–561.
Margalef, R (1958). Modern orientations in hydrobiology. Scientia. 93(2), 41-46
Martinez, A., Larranaga, A., Basaguren, A., Perez, C.L., Pozo, J. (2013). Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes. Hydrobiologia, 711,31–42.
Milliman, J.D. (1997). Blessed dams or damned dams. Nature. 386, 325–326
Monk, W.A., Wood, P.J., Hannah, D.M. and Wilson, D.A. (2008). Macroinvertebrate community response to inter-annual and regional river flow regime dynamics. River Research and Applications, 24(7), 988–1001
Monk, W.A., Wood, P.J., Hannah, D.M., Wilson, D.A., Extence, C.A. and Chadd, R.P. (2006). Flow variability and macroinvertebrate community response within riverine systems. River Research and Applications, 22(5), 595–615
Narangarvuu D., Hsu C.B., Shieh S.H., Wu F.C.,Yang P.S. (2014). Macroinvertebrate assemblage patterns as indicators of water quality in the Xindian watershed, Taiwan. Journal of Asia-Pacific Entomology, 17, 505–513.
Olden, J.D. and Poff, N.L. (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications. 19(2), 101–121.
Poff N. L., Richter B. D., Arthington A. H., Bunn S. E., Naiman R. J., Kendy E., Acreman M., Apse C., Bledsoe B. P., Freeman M. C., Henriksen J., Jacobson R. B., Kennen J. G., Merritt D. M., O'Keeffe J. H., Olden J. D., Rogers K., Tharme R. E., Warner A. (2010). The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147-170
Poff, L.N., Allan, D.J., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E. and Stromberg, J.C. (1997). The natural flow regime: A paradigm for river conservation and restoration, BioScience, 47(11),769-784
Power, M.E., Dietrich, W.E., Finlay, J.C. (1996). Dams and Downstream Aquatic Biodiversity: potential food web consequences of hydrologic and geomorphic change. Environmental Management. 20, 887–895
Resh, V. H. and Rosenberg D. M. (1984). The Ecology of Aquatic Insects. Holt Saunders Ltd., Praeger Publishers, ISBN 0-03-059684-X
Richter, B. D., and G. A. Thomas (2007). Restoring environmental flows by modifying dam operations. Ecology and Society, 12(1)
Richter, B., Baumgartner, J., Wigington, R. and Braun, D. (1997). How much water does a river need? Freshwater Biology, 37(1), 231–249
Richter, B.D., Baumgartner, J.V., Powell, J. and Braun, D.P. (1996). A method for assessing Hydrologic alteration within Ecosystems, Conservation Biology, 10(4), 1163–1174
Rosenberg, D.M., McCully, P., Pringle, C.M. (2000). Global-scale environmental effects of hydrological alterations: introduction. Bioscience 50 (9), 746–751
Rossi, A., Massei, N., Laignel, B., Sebag, D., Copard, Y. (2009). The response of the Mississippi River to climate fluctuations and reservoir construction as indicated by wavelet analysis of streamflow and suspended-sediment load, 1950–1975. Journal of Hydrology. 377 (3–4), 237–244
Sale M. J., Brill E. D., Herricks E. E. (1982). An approach to optimizing reservoir operation for downstream aquatic resources. Water Resources Research, 18(4), 705-712
Schmidt, J., Wilcock, P. (2008). Metrics for assessing the downstream effects of dams. Water Resources Research. 44 (4), W04404
Shiau, J.-T. and Hsu, H.-T. (2016). Suitability of ANN-Based daily Streamflow extension models: A case study of Gaoping river basin, Taiwan. Water Resources Management, 30(4), 1499–1513
Smakhtin, V.U. (2001). Low flow hydrology: A review. Journal of Hydrology, 240(s 3–4), 147–186
Sun, R., Wang, X., Zhou, Z., Ao, X., Sun, X. and Song, M. (2014). Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part I: Model development. Natural Hazards, 73(3), 1547–1568
Tennant, D.L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1, 6–10.
Tharme, R.E. (2003). A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers, River Research and Applications, 19(5-6), 397–441
Travers, M. (1971). Diversite du microplancton du Golfe de Marseille en 1964. Mar. Biology, 8 , 308–343
Ty T. V., Sunada K., Ichikawa Y. (2011). A spatial impact assessment of human-induced intervention on hydrological regimes: A case study in the upper Srepok River basin, Central Highlands of Vietnam. International Journal of River Basin Management, 9(2), 103-116
Van Strien, A.J., Soldaat, L.L. and Gregory, R.D. (2012) Desirable mathematical properties of indicators for biodiversity change. Ecological Indicators, 14(1), 202–208
Yang, S., Li, M., Dai, S., Liu, Z., Zhang, J., Ding, P. (2006). Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophysical Research Letters. 33 (6), L06408
Yang, Y.-C.E., Cai, X. and Herricks, E.E. (2008). Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resources Research, 44(4), W04412
Yin X. A., Yang Z. F. (2011). Development of a coupled reservoir operation and water diversion model: Balancing human and environmental flow requirements. Ecological Modelling, 222(2), 224-231
Yin X., Yang Z., Yang W., Zhao Y., Chen H. (2010). Optimized reservoir operation to balance human and riverine ecosystem needs: Model development, and a case study for the Tanghe reservoir, Tang river basin, China. Hydrological Processes, 24(4), 461-471
Zhang, Q., Gu, X., Singh, V.P. and Chen, X. (2015). Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations. Journal of Hydrology, 529, 711–722.
Zhang, Q., Xiao, M., Liu, C.-L. and Singh, V.P. (2014). Reservoir-induced hydrological alterations and environmental flow variation in the east river, the Pearl River basin, china. Stochastic Environmental Research and Risk Assessment, 28(8), 2119–2131
Zhang, Q., Xu, C.-Y., Singh, V.P., Yang, T. (2009). Multiscale variability of sediment load and streamflow of the Lower Yangtze River basin: possible causes and implications. Journal of Hydrology. 368, 96–104
Zhang, Q., Zhou, Y., Singh, V.P., Chen, X. (2012). The influence of dam and lakes on the Yangtze Rivers streamflow: long-range correlation and complexity analyses. Hydrological Processes. 26 (3), 436–444
吳富春, 胡通哲, 李國昇,李德旺 (1998). 應用棲地模式估算台灣河川之生態流量. 第九屆水利工程研討會,C, 21-28
周心韻 (2013). 考量新店溪流域整體水利設施營運與環境流量目標之最佳營運策略 . 國立成功大學水利及海洋工程研究所碩士論文
張騌麒 , 孫建平 (2009). 結構方程模式於建立生態水質水文指標之研究. 農業工程學報. 55( 3), 75-78
李國煜, (2010). 利用台灣生態水文指標推估魚類生態特性. 國立臺灣大學生物環境系統工程研究所論文
蕭政宗, 吳富春 (2004). 集集攔河堰最佳引水與河川生態流量之研究. 第十四屆水利工程研討會, C, 1-8
謝暻椲、吳瑞賢、溫博文、毛振泰 (2002). 大漢溪中游生態流量推估與棲地改善之研究,第十三屆水利工程研討會, F, 3240
經濟部水利署 (2011). 直潭壩水庫運用要點.
經濟部水利署 (2011). 阿玉壩水庫運用要點.
經濟部水利署 (2011). 青潭堰水庫運用要點.
經濟部水利署 (2011). 桂山壩水庫運用要點.
經濟部水利署 (2011). 粗坑壩水庫運用要點.
經濟部水利署 (2011). 羅好壩水庫運用要點.
臺北翡翠水庫管理局 (2011). 臺北翡翠水庫運用要點.