簡易檢索 / 詳目顯示

研究生: 莊麒叡
Chuang, Chi-Jui
論文名稱: 核廢料處置坑近場之阻隔障壁熱力-水力-力學耦合行為分析
Coupled Thermo-Hydro-Mechanical Analysis of Near-Field Isolation Materials in the Nuclear Waste Repository
指導教授: 陳昭旭
Chen, Chao-Shi
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 139
中文關鍵詞: 高放射性廢棄物深層地質處置熱力-水力-力學耦合TOUGH2FLAC3DANSYS
外文關鍵詞: high level radioactive waste, deep geological disposal, coupled T-H-M, TOUGH2, FLAC3D, ANSYS
相關次數: 點閱:163下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 深層地質處置(Deep geological disposal)為國際公認適於處置高放射性廢棄物(high level radioactive waste, HLRW)的方式,將高放射性廢棄物埋於300-1000公尺之岩盤中,再配合工程及自然障壁系統加以阻絕,以換取足夠的時間,讓廢棄物產生的輻射強度在到達生物圈之間已衰減至可忽略的程度。而深層岩體之大地應力與地下水之水力性質會受到核廢料之高熱能作用後有顯著地影響。因此,使用熱力-水力-力學耦合(coupled T-H-M)的評估深層核廢料地質處置的安全性是必要的。
    為重現Lawrence Berkeley National Laboratory (2003)提出之TOUGH2-FLAC3D數值程序,本研究透過撰寫MATLAB資料互傳程式,將TOUGH2運算資料與FLAC3D做連結,來分析深層岩體之熱力-水力-力學之耦合行為。並藉由瑞典發表之技術報告(SKB, 1999)進行數值驗證,由驗證結果顯示本研究提出TOUGH2-FLAC3D耦合程序可成功地分析T-H-M的案例。為因應處置坑及處置隧道之複雜模型幾何,本研究特別撰寫轉換程式,其可將ANSYS網格調渡至FLAC3D使用,可有效且快速簡化FLAC3D劃分複雜網格的困難度。
    本研究針對高放射性廢棄物之近場阻隔障壁系統,以T-H-M、T-H與純熱傳模式進行分析,先以簡化之單一處置坑,探討其緩衝材料溫度變化在T-H-M、T-H與純熱傳模式下之差異,以決定用何種模式進行分析為較保守的設計考量。其分析結果發現,由純熱傳模式得到之膨潤土頂部最高溫度皆高於T-H-M、T-H耦合模式約9%,若依較保守之處置場設計應可忽略水力和力學影響。在現實的處置隧道中,廢棄物罐的處置絕非單一存在,故需決定數值模擬時,至少需擺入多少的廢棄物罐數量,方使數值模擬更具備其代表性。假設一平行間隔40m之對稱雙處置隧道,並以每隧道中配置間距6m之5、7、9、11及13個廢棄物罐進行純熱傳分析,其分析結果顯示,配置7、9、11及13個之位於中間的廢棄物罐,其緩衝材最高溫度皆相同,故由此決定,對近場處置隧道進行數值分析時,至少需配置7個廢棄物罐才具代表性。接著,為探討我國緩衝材料(日興土)與他國(MX-80)之差異,同樣以平行40m之雙隧道,並配置7個廢棄物罐進行T-H-M、T-H、T之數值分析,其分析結果顯示,我國膨潤土(日興土)達到最高溫度97.7 oC大於他國膨潤土(MX-80)最高溫度93.36 oC,兩者發生最高溫差約4.34 oC,惟日興土在相同的處置環境下,其最高溫度逼近緩衝材100 oC之限制,故較MX-80些微劣之。
    本研究以相同之幾何型式(7個廢棄物罐配置於平行40m之雙隧道),以各種母岩之熱傳性質及不同高放射性廢棄物罐之間距對緩衝材進行熱傳分析,並探討其溫度變化。最後將各間距之分析結果,進行整理並繪製一高放射性廢棄物罐之間距及緩衝材最高溫度對照圖以利產學界參考之。

    "Deep geological disposal" is generally adopted worldwide for high level radioactive waste (HLRW) management. The spent nuclear fuel is encapsulated in a metal canister and then placed into an engineered facility within the bedrock at 300-1000 meters depth. Such a multiple barrier system, comprising both engineered and natural barriers, will efficiently retard the migration of radionuclides, long enough for them to decay to a safe level before reaching the biosphere. However, HLRW continues to emit heat for up to 100,000 years. Thus, thermal, hydro and mechanical (T-H-M) factors all have a potential effect on the long-term safety of the deposited waste.
    This thesis links TOUGH2 and FLAC3D by MATLAB to perform coupled T-H-M analyses of underground nuclear waste repositories to reproduce the TOUGH2-FLAC3D numerical procedure proposed by Lawrence Berkeley National Laboratory (2003). The proposed TOUGH2-FLAC3D coupled procedure is validated with the technical report presented by the SKB report (1999). The proposed TOUGH2-FLAC3D coupling routine can analysis coupled T-H-M case successfully. The geometry of disposal holes and disposal tunnels are complex. Consequently, a code is written to transfer the mesh produced by the ANSYS and converted to FLAC3D equivalents, transferred to a format data file, and then exported to FLAC3D.
    The present study is focus on near-field isolation system of high level radioactive waste repository. The peak temperature obtained from the coupled T-H-M model at the top of the Bentonite buffer is compared with that obtained from a coupled T-H model and a Thermal model, respectively, for the case of a single disposal canister. The results show Thermal model yields the most conservative estimate of the peak temperature of the three simulation models. Hence, hydro and mechanical effects should be ignored for conservative design of the repository. However, in practice, multiple canisters may be stored within a single disposal tunnel. Moreover, a single repository may comprise multiple disposal tunnels. It is essential to determine the number of canisters which should be considered when performing numerical simulations in planning the safe layout of a real-world repository. After that the repository is assumed to have 2 parallel and symmetrical tunnels and the spacing between adjacent disposal tunnels is specified as 40 m. 5, 7, 9, 11 and 13 canisters, with 6 m spacing, are placed within each disposal tunnel for Thermal model analysis. The results show the peak temperatures at the top of the Bentonite buffer are the same for 7 or more canisters (i.e., 9, 11 and 13). In other words, when using the most conservative model (the Thermal-model), a simulation model consisting of 7 canisters in a tunnel is sufficient to investigate the effect of the deposited canisters on the local rock temperature distribution. Afterwards, T-H-M, T-H and Thermal models are performed using a domestic buffer material (Zhisin clay) to investigate the different peak temperature between foreign buffer material (MX-80) with same geometry (7 canisters emplaced within 2 parallel and symmetrical tunnels and the spacing between adjacent tunnels is 40 m). The results show the peak temperature is found to reach a value of 97.7 oC at the top of the Zhisin clay which is higher than that of the MX-80 (93.36 oC). The peak temperature at the top of the Zhisin clay is very close to the maximum permissible value of 100 oC.
    The research uses the same geometry (model consisting of 7 canisters in 2 parallel and symmetrical tunnels with the disposal tunnels sapcing fixed at 40 m) and with varies thermal conductivity of the host rock and different spacing between each canister to investigate the the temperature variations. Finally, the results are plotted in the canisters pacing-peak buffer temperature chart which can be used as a reference for the layout of a nuclear waste repository.

    ABSTRACT I 中文摘要 I 致謝 I CONTENT II LIST OF TABLES VII LIST OF FIGURES VIII NOTATION XVII CHAPTER1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 PROCEDURE AND FLOW CHART 3 CHAPTER 2 LITERATURE REVIEW 7 2. 1 FINAL DISPOSAL OPTIONS FOR HIGH LEVEL NUCLEAR WASTE 7 2. 2 SWEDISH SYSTEM FOR NUCLEAR WASTE DISPOSAL 9 2. 3 IN-SITU EXPERIMENT TESTS 13 2. 4 COMPARISON BETWEEN IN-SITU EXPERIMENTAL TESTS AND NUMERICAL SIMULATIONS 14 2. 5 NUMERICAL SIMULATIONS BY TOUGH2 AND FLAC3D 18 CHAPTER3 METHODOLOGY 26 3.1 GOVERNING EQUATIONS AND NUMERICAL PROCEDURES IN TOUGH2 26 3.2 GOVERNING EQUATIONS AND NUMERICAL PROCEDURES IN FLAC3D 29 3.3 COUPLING OF TOUGH2 AND FLAC3D 31 3.3.1 TOUGH2-FLAC3D coupling approach 31 3.4 TOUGH2-FLAC3D COUPLING MODULES 32 3.5 COUPLING RELATIONSHIPS FOR LINKED TOUGH2-FLAC3D 34 3.5.1 Effective stress function for sedimentary rock 35 3.5.2 Correction of hydraulic properties of sedimentary rock 35 CHAPTER 4 VALIDATION OF PROPOSED COUPLED T-H-M PROCEDURE 37 4.1 3D MODEL 37 4.2 MATERIAL PARAMETERS 39 4.3 MESH FOR TOUGH2 SIMULATIONS 40 4.4 INITIAL CONDITIONS AND BOUNDARY CONDITIONS FOR TOUGH2 SIMULATIONS 41 4.5 MESH FOR FLAC3D SIMULATIONS 42 4.6 INITIAL CONDITIONS AND BOUNDARY CONDITIONS FOR FLAC3D SIMULATIONS 47 4.7 PRE-HEATING STAGE 48 4.7.1 TOUGH2 numerical simulation procedure 48 4.7.2 FLAC3D numerical simulation procedure 49 4.7.3 Thermal distribution 49 4.7.4 Pore pressure distribution 51 4.8 HEATING STAGE 53 4.8.1 Modelling of heat released from nuclear waste canister 53 CHAPTER 5 NUMERICAL ANALYSIS 58 5.1 3D MODEL AND MATERIAL PARAMETERS 59 5.2 INITIAL CONDITIONS AND BOUNDARY CONDITIONS FOR TOUGH2 SIMULATIONS 62 5.3 MESH FOR FLAC3D SIMULATIONS 63 5.4 INITIAL CONDITIONS AND BOUNDARY CONDITIONS FOR FLAC3D SIMULATIONS 63 5.5 HEAT DECAY 65 5.6 CASE STUDY 1 66 5.6.1 Initial temperature distribution 66 5.6.2 Initial pore pressure distribution 68 5.6.3 Initial stress distribution 69 5.6.4 Peak temperature obtained from T-H-M, T-H and Thermal models 71 5.6.5 Temperature distribution 3 years after canister placement from T-H-M model 72 5.6.6 Pore water distribution 3 years after canister placement from T-H-M model 74 5.6.7 Maximum principle stress distribution 3 years after canister placement from T-H-M model 75 5.7 CASE STUDY 2 77 5.7.1 Initial conditions and boundary conditions for FLAC3D simulations 78 5.7.2 Mesh of 10 disposal holes within 2 disposal tunnels for FLAC3D simulations 78 5.7.3 Mesh of 14 disposal holes within 2 disposal tunnels for FLAC3D simulations 79 5.7.4 Mesh of 18 disposal holes within 2 disposal tunnels for FLAC3D simulations 79 5.7.5 Mesh of 22 disposal holes within 2 disposal tunnels for FLAC3D simulations 80 5.7.6 Mesh of 26 disposal holes within 2 disposal tunnels for FLAC3D simulations 81 5.7.7 Temperature results from 1 to 26 disposal holes from Thermal model 81 5.8 CASE STUDY 3 89 5.8.1 Calculated temperature over time at top of Zhisin clay 89 5.8.2 Temperature distribution 8 years after 14 canisters placement from T-H-M model 91 5.8.3 Maximum principal stress 8 years after 14 canisters placement from T-H-M model 93 5.8.4 Pore water pressure 8 years after 14 canisters placement from T-H-M model 95 5.8.5 Temperature distribution 15 years after 14 canisters placement from T-H-M model 96 5.8.6 Maximum principal stress 15 years after 14 canisters placement from T-H-M model 98 5.9 EFFECT OF CANISTER SPACING ON THERMAL MODEL 101 CHAPTER 6 CONCLUSIONS AND SUGGESTIONS 108 6.1 CONCLUSION 108 6.2 LIMITATIONS AND SUGGESTIONS FOR FUTURE WORK 113 REFERENCES 114 APPENDIX A 120

    1. 台灣電力公司,(2009),用過核子燃料最終貯存計畫-潛在貯存母岩特性調查與評估階段,成果報告。
    2. 洪哲宇,(2013),核廢料深層處置周圍岩體之熱力-水力-力學,國立成功大學資源工程研究所碩士論文。
    3. 徐子兼,(2014),核廢料深層處置周圍回填材料之熱力-水力-力學耦合行為之研究,國立成功大學資源工程研究所碩士論文。
    4. 胡哲瑋,(2012),核廢料深層處置圍岩耦合熱-水力分析之研究,國立成功大學資源工程研究所碩士論文。
    5. 許俊賢,(2004),深層岩體熱力-水力-力學耦合行為之研究,國立成功大學資源工程研究所碩士論文。
    6. 戴豪君,(2003),深層岩體熱力-水力-力學耦合行為之初步研究,國立成功大學資源工程研究所碩士論文。
    7. 鍾柏仁,2001),核廢料深層貯存進場岩石熱力學行為初步研究,國立成功大學資源工程研究所碩士論文。
    8. Allard, T. and Calas, G. (2009), “Radiation effects on clay mineral properties”, Applied Clay Science, Vol. 43 pp.143–149.
    9. Alonso, E.E. , Alcoverro, J., Coste, F., Malinsky, L., Merrien-Soukatchoff, V., Kadiri, I., Nowak, T., Shao, H., Nguyen, T.S., Selvadurai, A.P.S., Armand, G., Sobolik, S.R., Itamura, M., Stone, C.M., Webb, S.W., Rejeb, A., Tijani, M., Maouche, Z., Kobayashi, A., Kurikami, H. , Ito, A., Sugita, Y., Chijimatsu, M., Börgesson, L. , Hernelind, J., Rutqvist, J., Tsang, C.-F. and Jussila, P. (2005), “The FEBEX benchmark test. Case definition and comparison of modelling approaches”. International Journal of Rock Mechanics & Mining Sciences, Vol. 42, pp. 611-638.
    10. Baxter, J., Bian, Z., Chen, G., Danielson, D. and Dresselhaus, M. S. (2009), “Nanoscale design to enable the revolution in renewable energy”, Energy & Environmental Science pp. 559–588.
    11. Brady, B. H. G. and Brown, E. T. (2006), Rock mechanics: for underground mining, Dordrecht: Springer.
    12. Chijimatsu, M., Nguyen, T.S., Jing, L., Jonge, J. D. , Kohlmeier, M. , Millard, A. , Rejeb, A. , Rutqvist, J. , Souley, M. and Sugita, Y. (2005), Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX III project. Part 1 Conceptualization and characterization of the problems and summary of results, International Journal of Rock Mechanics & Mining Sciences, Vol. 42 pp.720–730.
    13. Chijimatsu, M. , Fujita, T., Sugita, Y., Amemiya, K. and Kobayashi, A. (2001), “Field experiment, results and THM behavior in the Kamaishi mine experiment”, International Journal of Rock Mechanics & Mining Sciences, Vol. 38, pp. 67-78.
    14. Cooperation in Nuclear Power - World Nuclear Association, 2014. Available online: http://www.world-nuclear.org/Nuclear-Basics/ (accessed on 1 August 2014).
    15. Dutt, M. S. Saini, T. N. Singh, A. K. Verma and Bajpai, R. K. (2012), “Analysis of thermo-hydrologic-mechanical impact of repository for high-level radioactive waste in clay host formation an Indian deposal system”, Environmental Earth Science, Vol. 66, pp. 2327-2341.
    16. Desai, CS, and Christian, J.T. (1997), Numerical methods in geotechnical engineering, New York: McGraw-Hill.
    17. European Nuclear Society, 2014. Available online: http://www.euronuclear.org/ (accessed on 1 August 2014).
    18. Fairhurst, C(1993), “Geological isolation of radioactive waste: a challenge that must be met” Tunneling and Underground Space Technology, Vol. 8, pp. 313-314.
    19. Goel, R.K., Singh, B. and Zhao, J. (2012), Underground Infrastructures, Elsevier.
    20. Giusti, L. (2009), “A review of waste management practices and their impact on human health”, Waste Management, Vol. 29, pp.2227–2239.
    21. Hoek, E. and Brown, E.T. (1980) Empirical Strength Criterion for Rock Masses. Journal of the Geotechnical Engineering, ASCE, Vol. 106, NO. GT9, pp.1013-1035.
    22. Hoffert, M.I., Caldeira, K., Jain, A.K., Haites, E.F., Harvey, L.D.D., Potter, S. D., Schlesinger, M.E., Schneider, S. H., Watts, R.G., Wigley, T. M. L, and Wuebbles, D. J. (1998), “Energy implications of future stabilization of atmospheric CO2 content,” Nature, 395 pp. 881–884.
    23. Haukwa, C.B., Wu,Y.-S. and Bodvarssonkwa, G.S. (2003), “Modeling thermal–hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository”, Journal of Contaminant Hydrology, Vol. 62, pp 529-552.
    24. Itasca Consulting Group Inc. (1997). “FLAC3D Manual: Fast Lagrangian Analysis of Continua in 3 Dimensions – Version 3.0. Itasca Consulting Group Inc”, Minnesota.
    25. Javeri, V. (2008), “Three dimensional analysis of combined gas, heat and nuclide transport in a repository in clay rock including coupled thermo-hydro-geomechanical processes”, Physics and Chemistry of the Earth, Vol. 33, pp. S252–S259.
    26. KBS, “Final Storage of Spent Nuclear Fuel-KBS-3”, Swedish Nuclear Fuel Supply Co./Division KBS, Stockholm, Sweden, 1983
    27. Kuitunen, E. (2011), “Geological Disposal of Radioactive Waste - Effects of Repository Design and Location on Post-Closure Flows and Gas Migration, Doctoral thesis”, The University of Manchester, UK.
    28. Kwon, S. and Choi, J-W (2006), “Thermo-mechanical Stability Analysis for a Multi-level Radioactive Waste Disposal Concept”, Journal of Geotechnical and Geological Engineering, Vol. 24, pp. 361-377.
    29. Lindblom, U., and Gnirk, P. (1982), “Nuclear waste disposal: Can we rely on bedrock?” , Oxford: Pergamon Press.
    30. Li, X. , Zhang, C. and Röhlig, K.-J. (2013), “Simulations of THM processes in buffer-rock barriers of high-level waste disposal in an argillaceous formation”, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 5, pp. 277–286.
    31. Nguyen, T.S. (1996), “Coupled Thermo-hydro-mechanical Processes of Fractured Media”, Developments in Geotechnical Engineering, Vol. 79, pp. 539–544.
    32. Noorishad, J., Tsang, C.-F. and Witherspoon, P.A. (1984), “Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach. ” , Journal of Geophysical Research, Vol. 89, pp. 10365–10373.
    33. Ohnishi, Y. and Kobayashi, A. (1996), “Coupled Thermo-hydro-mechanical Processes of Fractured Media”, Developments in Geotechnical Engineering, Elsevier, Vol. 79, pp. 545–549.
    34. Pruess, K., Oldenburg, C. and Moridis , G. (1999), “Tough2 user’s guide version 2.0”, Earth Sciences Division, Lawrence Berkeley National Laboratory University of California, USA.
    35. Riebeek, H. (2010), “Global Warming: Feature Articles” NASA Earth Observatory.
    36. Rutqvist, J. , Wu, Y.-S., Tsang, C.-F., and Bodvarsson, G. (2002), “A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock”, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, Issue 4, , pp. 429–442.
    37. Rutqvist, J., Börgesson, L., Chijimatsu, M., Nguyen, T.S., Jing, L., Noorishad, J. and Tsang, C.-F. (2001), “Coupled Thermo-hydro-mechanical Analysis of a Heater Test in Fractured Rock and Bentonite at Kamaishi Mine – Comparison of Field Results to Predictions of Four Finite Element Codes”. International Journal of Rock Mechanics and Mining Science, Vol. 38, pp. 129-142.
    38. Rutqvist, J., Wu, Y.-S., Tsang, C.-F., Bodvarsson, G. (2002), “A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock”, International Journal of Rock Mechanics & Mining Sciences, Vol. 39, pp 429-42.
    39. Shafiee, S. and Topal, E. (2009), “When will fossil fuel reserves be diminished?”, Energy Policy Vol. 37 pp.181–189.
    40. SKB (1999), “Deep Repository for Spent Nuclear Fuel: SR 97 Post-Closure Safety”, Technical Report TR-99-41.
    41. SKB (2009), “Strategy for thermal dimensioning of the final repository for spent nuclear fuel”, Technical Report TR-09-04.
    42. SKB (2010), “Design, production and initial state of the buffer”, Technical Report TR-10-15.
    43. SKB, “Coupled thermal-hydro-mechanical calculations of the water saturation phase of a SKB-3 deposition hole”, SKB Technical Report TR-99-41, 1999.
    44. Terzaghi, K. and Richart, F.E. (1952), “Stresses in rock about cavities.” ,Geotechnique, Vol. 3, pp. 57-90.

    下載圖示 校內:2020-08-28公開
    校外:2020-08-28公開
    QR CODE