簡易檢索 / 詳目顯示

研究生: 方柏翔
Fang, Po-Hsiang
論文名稱: 有機半導體元件穩定性之研究及其應用
The study on the stability of organic semiconductor devices and their applications
指導教授: 周維揚
Chou, Wei-Yang
共同指導教授: 王右武
Wang, Yu-Wu
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 135
中文關鍵詞: 低電壓軟性有機反相器原位測量聚合物半導體熱梯度晶體結構記憶元件電偶極穩定性磁性奈米粒子自旋耦合鐵磁性室溫
外文關鍵詞: low voltage, flexible organic inverter, in-situ measurement, GIXRD, polymer semiconductor, thermal gradient, crystalline structure, memory devices, electric dipoles, stability, magnetic nanoparticle, spin coupling, ferromagnetism, room temperature
相關次數: 點閱:87下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目標是將有機場效電晶體應用於不同的有機元件中,並著重研究和增強每個有機元件於長期使用或適應不同環境條件下進行穩定性分析。
    在第二章中,我們以PI作為軟性有機反相器的基板,並在基板上旋轉塗佈C-PVP/氧化鋁形成雙層介電層。這些軟性有機反相器能夠在低電壓2V下操作,且電流增益超過50。經過104次撓曲測試後,這些軟性有機反相器仍然表現出優異的機械性和電性。這種穩定性歸因於有機半導體具有優越的微結構,這一點通過in-situ的2維低掠角X射線繞射(GIXRD)得到證明。GIXRD光譜分析顯示,經過不同的彎曲次數後,軟性有機反相器的繞射峰寬度變化不到1.5%。而且在104次彎曲後,軟性有機反相器仍然保持穩定的增益,且在彎曲過程中最大的轉換電壓偏移量為0.31V。這些結果表明,我們的反相器在低電壓柔性電子商業應用中具有潛在的潛力。
    在第三章中,我們研究了低電壓驅動的有機場效電晶體,以p型半導體PBTTT-C14作為主動層材料。本章的重點在於聚合物半導體晶化過程,並通過探討聚合物半導體微結構的變化來了解其光電特性。我們利用熱梯度系統從六甲基苯(HMB)/ PBTTT-C14混合溶液中形成了寬度為0.8 µm的纖維狀晶體。利用這些晶體製造了具有結晶化PBTTT-C14的有機場效電晶體。在熱梯度系統中,HMB從HMB/PBTTT-C14混合溶液中分離出來,並且在樣品移動方向上結晶。通過原子力顯微鏡和拉曼光譜在不同溫度下對晶體進行物理性質分析,實驗結果顯示透過HMB處理的PBTTT-C14薄膜可改善半導體微結構,實現了具方向性的晶體結構。這些結果與理論計算相結合,顯示了結晶化的PBTTT-C14晶體中的π堆疊程度很高。結晶化的PBTTT-C14晶體展現出良好的結晶性,增強了分子內和分子間的載子傳輸。值得注意的是,與旋轉塗佈的PBTTT-C14有機場效電晶體相比,不論是在氮氣填充的手套箱中或者在大氣環境條件下進行測量,具有結晶化的PBTTT-C14有機場效電晶體的電性能均顯著改善。這種現象在使用相同熱梯度系統製造的結晶化P3HT的有機場效電晶體中也可以觀察到。
    在第四章中,本研究專注於利用氧化鋁作為高K值介電材料,在有機場效電晶體中實現高電特性的穩定性和記憶保持。為了增強穩定性,我們使用不同PI固體的含量來改變有機場效電晶體的閘極介電層,並降低閘極介電層中的陷阱態密度,以控制n型半導體有機場效電晶體的穩定性。透過添加PI層,我們增強了偶極矩,從而使得載子生成增多,進而改善有機場效電晶體的特性和穩定性。與僅使用氧化鋁作為介電層相比,使用不同PI固體含量的有機場效電晶體在固定閘極偏壓應力下隨著時間的增加能夠更穩定地運行。此外,使用PI薄膜的有機記憶元件表現出優異的記憶保持性和耐用性。總結來說,本研究成功製造了低電壓、穩定的有機場效電晶體,並應用於具有高記憶窗口的有機記憶元件,未來在記憶體元件方面具有相當大的潛力。
    在第五章中,我們成功地在室溫下將P3HT與Fe3O4奈米粒子結合,製造了聚合物磁性半導體薄膜。當P3HT薄膜中嵌有Fe3O4奈米粒子的材料施加磁場時,我們使用磁力顯微鏡觀察到強磁訊號。在室溫下,聚合物磁性半導體展示出明顯的鐵磁遲滯曲線,其順磁力為300 Oe。這表明P3HT分子和Fe3O4奈米粒子之間存在強烈的自旋耦合。

    The development of organic electronics has garnered significant attention, emphasizing the necessity to investigate the stability characteristics of organic electronic devices, particularly for long-term usage and adaptability to different environmental conditions. The objective of this research is to apply organic field-effect transistors (OFETs) in various organic devices and investigate and enhance the stability of each devices. Through these efforts, this study aims to contribute to the advancement of stable and reliable organic electronics.
    In Chapter 2, polyimide (PI) was used as the substrate for flexible organic inverters. A bilayer dielectric consisting of cross-linked poly(4-vinylphenol)/ aluminum oxide (Al2O3) was employed. These flexible organic inverters were capable of operating at a low voltage of 2V. The achieved gain at 2V was over 50. The organic inverters demonstrated excellent mechanical and electrical stability even after undergoing 104 bending times. This stability was attributed to the superior microstructural stability of the organic semiconductors, as evidenced by in situ 2D grazing incidence X-ray diffraction (GIXRD). Analysis of GIXRD spectra revealed that the width of the diffraction peak varied by less than 1.5% after different bending times. The proposed inverters maintained stable gains of over 50 even after 104 bending times, with a maximum transition voltage shift of 0.31V during bending. These results suggest that our inverters have promising potential for commercial applications in low-voltage flexible electronics.
    In Chapter 3, we investigated low-voltage driven OFETs utilizing the p-type semiconductor poly(2,5-bis(3-alkylthiophen-2-yl) thieno[3,2-b] thiophene) (PBTTT-C14) as the active layer. The focus was on the processing and crystallization of polymer semiconductors, as their opto-electronic properties heavily rely on microstructure. We present the results of polymer crystallization from hexamethylbenzene (HMB)/PBTTT-C14 mixtures, employing a thermal gradient system that resulted in the formation of fiber-like crystals measuring up to 0.8 μm in width. Crystalline PBTTT-C14-based OFETs were fabricated using these crystals. In the thermal gradient system, HMB separated from the HMB/PBTTT-C14 mixtures and crystallized in the direction of sample movement. Characterization of the crystals' physical properties through in situ atomic force microscopy and Raman spectroscopy at different temperatures revealed that the PBTTT-C14 thin film processed with HMB exhibited improved microstructure and achieved a directionally crystalline structure. The combination of these results with theoretical calculations indicated a high degree of π-stacking within the crystalline PBTTT-C14 (c-PBTTT-C14) crystal. c-PBTTT-C14 exhibited good crystallinity, enhancing the intra- and inter-molecular transmission of electrons. Notably, the electrical performance of c-PBTTT-C14-based OFETs showed significant improvement compared to spin-coated PBTTT-C14-based OFETs, regardless of whether the measurements were conducted in a nitrogen-filled glove box or in atmospheric conditions. This phenomenon was also observed in the crystalline P3HT-based OFETs fabricated using the same thermal gradient system.
    In Chapter 4, this study focused on achieving high electrical stability in OFETs and retention in OFET-based memory devices by utilizing Al2O3 as a high-K dielectric material. The objective was to reduce threshold and operating voltages. To enhance stability, we modified the gate dielectric of OFETs using PI with varying solid contents. This adjustment allowed us to control stability in N, N’-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13)-based OFETs by reducing trap state density within the gate dielectric. By incorporating the PI layer, carriers accumulated due to the dipole field created by electric dipoles compensated for gate field-induced stress, resulting in improved performance and stability of the OFETs. Compared to using Al2O3 alone as the dielectric layer, modifying the OFET with different solid contents of PI enabled more stable operation under fixed gate bias stress over time. Additionally, the OFET-based memory devices with the PI film exhibited excellent memory retention and durability. In conclusion, this study successfully fabricated a low-voltage, stable OFET and demonstrated the potential for industrial production of organic memory devices with a significant memory window.
    In Chapter 5, we successfully fabricated polymer magnetic semiconductor thin films at ambient temperature by combining poly(3-hexylthiophene-2,5-diyl) (P3HT) with Fe3O4 nanoparticles. When a magnetic field was applied to the P3HT film embedded with Fe3O4 nanoparticles, a strong magnetic signal was observed using a magnetic force microscope. The polymer magnetic semiconductor exhibited a clear ferrimagnetic hysteresis curve at room temperature, with a coercivity of 300 Oe. This indicates the presence of strong spin coupling between P3HT molecules and Fe3O4 nanoparticles.

    中文摘要 I Abstract III 誌謝 VI Contents VII Table contents XI Figure contents XII Chapter 1 1 1.1 Introduction 1 1.1.1 Brief overview of organic field-effect transistors 2 1.1.2 Overview of Organic Magnetic Semiconductors 3 1.2 Operating principle and parameter characteristics of components 6 1.2.1 The operating principle and parameter characteristics of OFET 6 1.2.2 The operating principle and parameter characteristics of magnetic semiconductor 8 1.3 Research motivation 11 Reference 14 Chapter 2 Analysis of Ultrathin Organic Inverters by Using in situ Grazing Incidence X-ray Diffraction under High Bending Times and Low Voltage✽ 18 2.1 Introduction 18 2.2 Experimental section 19 2.2.1 Device preparation 19 2.2.2 Characterization 20 2.3 Results and discussion 21 2.3.1 Electrical characterization of the organic inverter 21 2.3.2 Electrical stability analysis of organic inverters 23 2.3.3 In-situ GIXRD analysis 29 2.3.4 Investigating the effects of device bending on dielectric layers 31 2.4 Conclusion 34 Acknowledgements 35 Reference 35 Chapter 3 Air stable crystalline polymer-based field-effect transistors fabricated by thermal gradient process* 39 3.1 Introduction 39 3.2 Experimental section 41 3.2.1. Device preparation 41 3.2.2. Characterization 43 3.2.3. Theoretical Calculations 43 3.3 Results and discussion 44 3.3.1. Surface morphology of PBTTT-C14 thin films 44 3.3.2. Absorption and PL analysis 46 3.3.3. GIXRD analysis 50 3.3.4. Raman analysis 52 3.3.5. Raman analysis of PBTTT-C14 thin films after annealing 54 3.3.6. Electrical characterization of the PBTTT-C14 device 57 3.4 Conclusion 64 Acknowledgements 65 References 66 Chapter 4 Enhancement of Stability in n-Channel OFETs by Modulating Polymeric Dielectric✽ 72 4.1 Introduction 72 4.2 Experimental section 74 4.2.1 Device preparation 74 4.2.2 Characterization 75 4.3 Results and discussion 76 4.3.1 Surface morphology analyses of dielectric layers 76 4.3.2 Analysis of thin film microstructure 78 4.3.3 Electrical measurements of OFETs 80 4.3.4 Stability analysis of OFETs 88 4.3.5 Analyses of memory device characteristics 92 4.4 Conclusion 99 Acknowledgements 101 References 101 Chapter 5 Room temperature ferromagnetism in Fe3O4 nanoparticle-embedded polymer semiconductors✽ 108 5.1 Introduction 108 5.2 Experimental section 110 5.2.1 Magnetic thin film preparation 110 5.2.2 Magnetic thin film Characterization 111 5.3 Results and discussion 113 5.3.1 Surface morphology analyses of magnetic thin film 113 5.3.2 Analysis of magnetic thin film microstructure 116 5.3.3 TRPL analysis 119 5.3.4 Analysis of magnetic properties of magnetic thin films 120 5.4 Conclusion 122 Acknowledgements 123 References 123 Chapter 6 Summary 128 Appendix 131 List of publications 133

    Chapter 1
    [1] Z. Wang, J. Hu, J. Lu, X. Zhu, X. Zhou, L. Huang, L. Chi, Charge Transport Manipulation via Interface Doping: Achieving Ultrasensitive Organic Semiconductor Gas Sensors, ACS Appl. Mater. Interfaces, 2023, 15, 8355-8366.
    [2] V. V. Tran, G. Jeong, E. Wi, D. Lee and M. Chan, Design and Fabrication of Ultrathin Nanoporous Donor–Acceptor Copolymer-Based Organic Field-Effect Transistors for Enhanced VOC Sensing Performance, ACS Appl. Mater. Interfaces, 2023, 15, 21270-21283.
    [3] A. A. Trul, V. P. Chekusova, D. S. Anisimov, O. V. Borshchev, M. S. Polinskaya, E. V. Agina, S. A. Ponomarenk, Operationally Stable Ultrathin Organic Field Effect Transistors Based on Siloxane Dimers of Benzothieno[3,2-b][1]Benzothiophene Suitable for Ethanethiol Detection, Adv. Electron. Mater., 2022, 8, 2101039.
    [4] V. Bruevich, H. H. Choi, V. Podzorov, The Photo-Hall Effect in High-Mobility Organic Semiconductors, Adv. Funct. Mater.., 2021, 31, 2006178.
    [5] C. Jiang, HAll-Inkjet Printed Organic Thin-Film Transistors with and without Photo-Sensitivity to Visible Lights, Crystals, 2020, 10, 727.
    [6] X. Q. Jiang, C. F. Sun, C. C. Zhang, S. S. Cheng, Highly responsive biosensors based on organic field-effect transistors under light irradiation, Chin. Chem. Lett., 2021, 32, 3364-3367.
    [7] J. W. Tao, W. B. Sun, L. H. Lu, Organic small molecule semiconductor materials for OFET-based biosensors, Biosens. Bioelectron., 2022, 216, 114667.
    [8] C. F. Sun, T. Wang, Organic thin-film transistors and related devices in life and health monitoring, Nano Res., 2023.
    [9] R. F. Hao, Y. F. Yue, L. L. Li, J. L. Ji, Q. Zhang,L. F. Ding, S. B. Sang, Q. Li, P3HT-based organic field effect transistor for low-cost, label-free detection of immunoglobulin G, J. Biotechnol., 2022, 359, 75-81.
    [10] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, Alan G. MacDiarmid “Electrical conductivity in doped polyacetylene”, Phys. Rev. let., 1977, 39, 1098.
    [11] A. Tsumura, H. Koezuka, T. Ando, Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film, App. Phys. Let., 1986, 49, 1210-1212.
    [12] Y. W. Song, W. Tang, L. Han, Y. Liu, C. C. Shen, X. K. Yin, B. Ouyang, Y. Z. Su, X. J. Guo, Integration of nanomaterial sensing layers on printable organic field effect transistors for highly sensitive and stable biochemical signal conversion, Nanoscale, 2023, 15, 5537-5559.
    [13] A. Nawaz, L. Merces, L. M. M. Ferro, P. Sonar, C. C. B. Bufon, C. B. Carlos, Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics, Adv. Mater., 2023, 35, 2204804.
    [14] L. K. Reb, M. Boehmer, B. Predeschly, S. Grott, C. L. Weindl, G. I. Ivandekic, R. J. Guo, L. V. Spanier, M. Schwartzkopf, A. Chumakov, C. Gernhaeuser, S. V. Roth, A. Meyer, P. Mueller-Buschbaum, Space- and Post-Flight Characterizations of Perovskite and Organic Solar Cells, Solar RRL, 2023, 7, 2300043.
    [15] K. Sharma, B. Abbas, A study of highly efficient organic light emitting transistors that outperforms organic light emitting diodes, Opt. Quantum Electron., 2023, 55, 338.
    [16] X. Zhang, M. Zhang, Y. Yan, Y. Zhou, M. Wong, H. S. Kwok, Effect of interface modification conditions on electrical characteristics and device consistency of organic thin film transistors, IEEE Electron. Device Lett., 2022, 43, 36-39.
    [17] C. F. Liu, S. S. Li, Y. Yan, J. Zhang, W. J. Duan, Y. H. Zhang, H. P. Liu, Q. Luo, S. G. Chen, X. Liu, W. Y. Lai, Tailoring Crystallization Growth of Small-Molecule Organic Semiconductors by Modification with Conjugated Polymers for Organic Field-Effect Transistors, Adv. Electron. Mater., 2023, 2201107..
    [18] Y. V. Korshak, T. V. Medvedeva, A. A. Ovchinnikov, V. N. Spector, Organic polymer ferromagnet, Nature, 1987, 326, 370-372.
    [19] Q. L. Jiang, J. Zhang, Z. Q. Mao, Y. Yao, D. K. Zhao, Y. H. Jia, D. H. Hu, Y. G. Ma, Spector, Room-Temperature Ferromagnetism in Perylene Diimide Organic Semiconductor, Nature, 2022, 34, 2108103.
    [20] W. Y. Chou, S. K. Peng, F. H. Chang, H. L. Cheng, J. J. Ruan, T. Y. Hao, Ferromagnetism above Room Temperature in a Ni-Doped Organic-Based Magnetic Semiconductor, ACS Appl. Mater. Interfaces, 2021, 13, 34962-34972.

    Chapter 2
    [1] V. Fiore, P. Battiato, S. Abdinia, S. Jacobs, I. Chartier, R. Coppard, G. Klink, E. Cantatore, E. Ragonese, G. Palmisano, An Integrated 13.56-MHz RFID Tag in a Printed Organic Complementary TFT Technology on Flexible Substrate, IEEE., 2015, 62. 1668-1677.
    [2] G. E. Bonacchini, C. Bossio, F. Greco, V. Mattoli, Y.H. Kim, G. Lanzani, M. Caironi, Tattoo‐Paper Transfer as a Versatile Platform for All‐Printed Organic Edible Electronics, Adv. Mater., 2018, 30, 1706091.
    [3] G. Schwartz, B. C. K. Tee, J. Mei1, A. L. Appleton, D. H. Kim, H. Wang Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring, Nat. Commun., 2013, 4.
    [4] X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang, Y. Cheng, R. Wen, L. Ma, F. Yan, and Y. Xia, PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications, Adv. Sci., 2019, 6, 1900813.
    [5] T. Sekitani and T. Someya, Ambient Electronics, Jpn J Appl Phys., 2012, 51, 100001.
    [6] R. Kubota, Y. Sasaki, T. Minamiki, and T. Minami, Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors, ACS Sens., 2019, 4, 2571-2587.
    [7] Y. Zang, D. Huang, C. Di, and D. Zhu, Device Engineered Organic Transistors for Flexible Sensing Applications, Adv. Mater., 2016, 28, 4549-4555.
    [8] Y. Jiang, Z. Liu, Z. Yin and Q. Zheng, Mater. Chem. Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing, Front., 2020, 4, 1459-1470.
    [9] T. Xu, S. Guo, W. Qi, S. Li, M. Xu, W. Xie, and W. Wanga, High-performance flexible organic thin-film transistor nonvolatile memory based on molecular floating-gate and pn-heterojunction channel layer, Appl. Phys. Lett., 2020, 116, 023301.
    [10] K. Pei, X. Ren, Z. Zhou, Z. Zhang, X. Ji, and P. K. L. Chan, A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors, Adv. Mater., 2018, 30, 1706647.
    [11] W. Li, F. Guo, H. Ling, P. Zhang, M. Yi, L. Wang, D. Wu, L. Xie, and W. Huang, High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers, Adv. Sci., 2017, 4, 1700007.
    [12] Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates and M. McCreary, Flexible active-matrix electronic ink display, Nature, 2003, 423, 136.
    [13] G. Gelinck, H. E. Huitema, E. Vanveenendaal, E. Cantatore, L. Schrijnemakers, J. P. H. Vanderputten, T. T. Geuns, M. Beenhakkers, J. Giesbers, B. Huisman, E. Meijer, E. Benito, F. Touwslager, A. Marsman B. Vanrens and D. Deleeum, Flexible active-matrix displays and shift registers based on solution-processed organic transistors, Nature material, 2004, 3, 106.
    [14] W. Honda, S. Harada, T. Arie, S.Akita and K. Takei, Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques, Adv. Funct. Mater., 2014. 24, 3299-3304.
    [15] Y. Zang, F. Zhang, C. Di and D. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications, Mater. Horiz.,2015, 2, 133-254.
    [16] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi and T. Sakurai, A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications, PNAS, 2004, 101, 9966-9970.
    [17] X. Wang, Y. Gu, Z. Xiong, Z. Cui and T. Zhang, Silk-Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals, Adv. Mater., 2014, 26, 1336-1342.
    [18] X. H. Zhang, W. J. Potscavage, Jr., S.Choi and B. Kippelen, Low-voltage flexible organic complementary inverters with high noise margin and high dc gain, Appl. Phys. Lett., 2009, 94, 043312.
    [19] Q. Sun, T. Li, W. Wu, S. Venkatesh, X. Zhao, Z. Xu and V. A. L. Roy, Printed High-k Dielectric for Flexible Low-Power Extended Gate Field-Effect Transistor in Sensing Pressure, ACS Appl. Electron. Mater, 2019, 1, 711-717.
    [20] S. Mandal, A. Mandal, G.Jana, S. Mallik, S. Roy, A. Ghosh, P. K. Chattaraj and D. K. Goswami, Low Operating Voltage Organic Field-Effect Transistors with Gelatin as a Moisture-Induced Ionic Dielectric Layer: The Issues of High Carrier Mobility, ACS Appl. Mater. Interfaces, 2020, 12, 19727-19736.
    [21] J. Jang, S. Nam, W. M. Yun, C. Yang, J. Hwang, T. K. An, D. S. Chung and C. E. Park, High Tg cyclic olefin copolymer/Al2O3 bilayer gate dielectrics for flexible organic complementary circuits with low-voltage and air-stable operation, J. Mater. Chem., 2011, 21, 12542-12546.
    [22] W. Y. Xu, H. Wang, L. Ye, J. B. Xu, The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors, J. Mater. Chem. C, 2014, 2, 5389-5396.

    Chapter 3
    [1] A. Minoru, Y. Zheng, H. Tran, Z. N. Bao, Intrinsically stretchable conjugated polymer semiconductors in field effect transistors, Prog. Polym. Sci., 2020, 100, 101181.
    [2] M. Li, J. W. Wang, Z. W. Xu, L. Li, W. Pisula, A. J. J. René, M. Liu, Noncovalent semiconducting polymer monolayers for high-performance field-effect transistors, Prog. Polym. Sci., 2021, 117, 101394.
    [3] L. X. Luo, W. N. Huang, C. L. Yang, J. Zhang, Q. C. Zhang, Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors, Front. Phys., 2021, 16, 33500.
    [4] F. Simone, N. Mark, S. Alberto, S. Guillaume, S. F. Henning, Charge transport in high-mobility conjugated polymers and molecular semiconductors, Nat. Mater., 2020, 19, 491-502.
    [5] R. H.Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. BreÂdas, M. LoÈgdlund, W. R. Salaneck, Electroluminescence in conjugated polymers, Nature, 1999, 397, 121-128.
    [6] Y. C. Liu, Y. K. Wang, C. S. Li, Z. J. Ren, D. G. Ma, S. K. Yan, Efficient Thermally Activated Delayed Fluorescence Conjugated Polymeric Emitters with Tunable Nature of Excited States Regulated via Carbazole Derivatives for Solution-Processed OLEDs, Macromolecules, 2018, 51, 4615-4623.
    [7] Y. C. Liu, L. Hua, S. Yan, Z. Ren, Halogenated pi-conjugated polymeric emitters with thermally activated delayed fluorescence for highly efficient polymer light emitting diodes, Nano Energy, 2020, 73, 104800.
    [8] S. Y. Shao, L. X. Wang, Through-space charge transfer polymers for solution-processed organic light-emitting diodes, Aggregat, 2020, 1, 45-56.
    [9] G. Serap, N. Helmut, S. S. Niyazi, Conjugated Polymer-Based Organic Solar Cells, Chem. Rev., 2007, 107, 1324-1338.
    [10] R. M. Ary, I. Ahmed, B. A. Shujahadeen, N. A. Sozan, A. B. Mohamad, Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review, Polymers, 2020, 12, 2627.
    [11] D. D. Xia, C. Li, W. W. Li, Crystalline Conjugated Polymers for Organic Solar Cells: From Donor, Acceptor to Single-Component, Chem. Rec., 2019, 19, 962-972.
    [12] Y. F. Geng, A. L. Tang, K. Tajima, Q. D. Zeng, E. J. Zhou, Conjugated materials containing dithieno[3,2b:2’,3’-d] pyrrole and its derivatives for organic and hybrid solar cell applications, J. Mater. Chem. A, 2019, 7, 64-96.
    [13] Y. N. Kim, F. Masahiro, T. Nobuyuki, Thieno[3,2-b] thiophene derivatives exhibiting semiconducting liquid-crystalline phases at lower temperatures, RSC Adv., 2014, 4, 60511-60518.
    [14] I. Hiroshi, H. Tomonori, T. Hisaaki, S. I. Kuroda, Critical regime for the insulator-metal transition in highly ordered conjugated polymers gated with ionic liquid, J. J. Appl. Phys., 2016, 55, 03DC08.
    [15] J. H. Jeong, E. Makram, C. Y. Lee, H. Meriam, F. D. Mohamed, H. J. Kim, Y. K. Kim, Ultrasensitive detection of hazardous reactive oxygen species using flexible organic transistors with polyphenol-embedded conjugated polymer sensing layers, J. Hazard. Mater., 2018, 355, 17-24.
    [16] N. Y. Benjamin, A. R. Jung, Y. H. Noh, G. S. Ryu, D. T. Grace, K. K. Lee, B. S. Kim, Y. Y. Noh, Highly Sensitive Flexible NH3 Sensors Based on Printed Organic Transistors with Fluorinated Conjugated Polymers, ACS Appl. Mater. Interfaces, 2017, 9, 7322-7330.
    [17] P. Manish, S. Heriyanto, K. Nikita, S. P. Shyam, A. Ryo, B. Hiroaki, N. Masakazu, Extreme Orientational Uniformity in Large-Area Floating Films of Semiconducting Polymers for Their Application in Flexible Electronics, ACS Appl. Mater. Interfaces, 2021, 13, 38534-38543.
    [18] S. M. T.Atul, K. Nikita, N. Shuichi, H. Shuzi, S. P. Shyam, Facile fabrication of large area oriented conjugated polymer films by ribbon-shaped FTM and its implication on anisotropic charge transport, Org. Electron., 2019, 65, 1-7.
    [19] G. S. Sandeep, N. R, Harshil, A. Rafiq, S. Prashant, N. S. Khaled, R. V. Ramgopal, Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review, Trends Analyt. Chem., 2019, 111, 27-36.
    [20] Y. Saravanan, N. Ali, L. Qian, D. Deepak, G. S. Sandeep, N. S. Khaled, S. Prashant, Organic field-effect transistor-based flexible sensors, Chem. Soc. Rev., 2020, 49, 3423.
    [21] M. Xu, O. Dora, K. Y. Vamsi, The design, fabrication, and applications of flexible biosensing devices, Biosens. Bioelectron., 2019, 124-125, 96-114.
    [22] N.Rodrigo, R. Jonathan, V. Koen, P. V. K. Felix, S. Natalie, S. Paul, F. T. Michael, S. Alberto, A general relationship between disorder, aggregation and charge transport in conjugated polymers, Nat. Mater., 2013, 12, 1038-1044.
    [23] P. Wojciech, Z. Matthias, J. Y. Chang, M. Klaus, Z. Rudolf, Liquid Crystalline Ordering and Charge Transport in Semiconducting Materials, Macromol. Rapid Commun., 2009, 30, 1179-1202.
    [24] F. Antonio, π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications, Chem. Mater., 2011, 23, 733-758.
    [25] X. R. Zhang, B. Hugo, J. K. Auke, S. Jeremy, Y. G. Kim, R. J. Kline, J. R. Lee, D. A. Thomas, S. Henning, K. G. Song, H. Martin, W. M. Zhang, M. Iain, M. D. Dean, Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer, Nat. Commun., 2013, 4, 2238.
    [26] B. N. Christian, T. Mathieu, M. Iain, Recent Advances in the Development of Semiconducting DPP-Containing Polymers for Transistor Applications, Adv. Mater., 2013, 25, 1859-1880.
    [27] Y. H. Xu, S. B. Jin, H. Xu, N. Atsushi, D. L. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 2013, 42, 8012.
    [28] Z. F. Yao, Y. Q. Zheng, J. H. Dou, Y. Lu, Y. F. Ding, L. Ding, J. Y. Wang, P. Jian, Approaching Crystal Structure and High Electron Mobility in Conjugated Polymer Crystals, Adv. Mater., 2021, 33, 2006794.
    [29] P. Wei, Z. C. Shen, X. S. Qin, P. Zhang, L. J. Bu Q., Chen, V. R. Stephan, G. H. Lu, Improving Charge Injection at Gold/Conjugated Polymer Contacts by Polymer Insulator-Assisted Annealing for Transistors, Small 2021, 2105896.
    [30] C. Kartik, X. C.Alexander, M. P. Gregory, R. Rory, U. Armando, J. D. Tim, K. Moses, T. K. Andrew, G. W. Benjamin, A. B. Jordan, P. F. David, L. A. Alexander, J. L. Darren, Comparison of the Mechanical Properties of a Conjugated Polymer Deposited Using Spin Coating, Interfacial Spreading, Solution Shearing, and Spray Coating, ACS Appl. Mater. Interfaces, 2021, 13, 51436-51446.
    [31] H. F. Gao, J. G. Feng, B. Zhang, C. Y. Xiao, Y. C. Wu, X. N. Kan, B. Su, Z. H. Wang, W. P. Hu, Y. M. Sun, L. Jiang, J. H. Alan, Capillary-Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors, Adv. Funct. Mater., 2017, 27, 1701347.
    [32] P. Brocorens, A. V. Vooren, M. L. Chabinyc, M. F. Toney, M. Shkunov, M. Heeney, I. McCulloch, J. Cornil, R. Lazzaroni, Solid-State Supramolecular Organization of Polythiophene Chains Containing Thienothiophene Units, Adv. Mater., 2009, 21, 1193-1198.
    [33] E. Cho, C. Risko, D.Kim, R. Gysel, N. C. Miller, D. W. Breiby, M. D. McGehee, M. F. Toney, R. J.,Kline, J. L. Bredas, Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl) thieno-[3,2-b] thiophene) Films, J. Am. Chem. Soc., 2012, 134, 6177-6190.
    [34] L. H. Li, O. Y. Kontsevoi, S. H. Rhim, A. J. Freeman, Structural, Electronic, and Linear Optical Properties of Organic Photovoltaic PBTTT-C14 Crystal, J. Chem. Phys., 2013, 138, 164503.
    [35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al. Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2013.
    [36] N. S. Colella, J. A. Labastide, B. P. Cherniawski, H. B. Thompson, S. R. Marques, L. Zhang, Ö. Usluer, J. J. Watkins, A. L. Briseno, M. D. Barnes, Poly[2,5-bis(3-dodecylthiophen-2-yl) thieno[3,2 b] thiophene] Oligomer Single-Crystal Nanowires from Supercritical Solution and Their Anisotropic Exciton Dynamics, J. Phys. Chem. Lett., 2017, 8, 2984-2989.
    [37] J. Clark, C. Silva, R. H. Friend, F. C. Spano, Role of Intermolecular Coupling in the Photophysics of Disordered Organic Semiconductors: Aggregate Emission in Regioregular Polythiophene, Phys. Rev. Lett., 2007, 98, 206406.
    [38] J. Clark, J. F. Chang, F. C. Spano, R. H. Friend, C. Silva, Determining Exciton Bandwidth and Film Microstructure in Polythiophene Films Using Linear Absorption Spectroscopy, Appl. Phys. Lett., 2009, 94, 163306.
    [39] F. C. Wu, Y. C. Huang, H. L. Cheng, W. Y. Chou, F. C. Tang, Importance of Disordered Polymer Segments to Microstructure-Dependent Photovoltaic Properties of Polymer-Fullerene Bulk Heterojunction Solar Cells, J. Phys. Chem. C, 2011, 115, 15057-15066.
    [40] F. C. Spano, Absorption in Regio-Regular Poly(3-hexyl) thiophene Thin Films: Fermi Resonances, Interband Coupling and Disorder, Chem. Phys., 2006, 325, 22-35.
    [41] N. Kumari, M. Pandey, S. Nagamatsu, M. Nakamura, S. S. Pandey, Investigation and Control of Charge Transport Anisotropy in Highly Oriented Friction-Transferred Polythiophene Thin Films, ACS Appl. Mater. Interfaces, 2020, 12, 11876-11883.
    [42] B. R. Lin, H. L. Cheng, H. H. Lin, F. C. Wu, J. H. Lin, W. Y. Chou, J. J. Ruan, Y. W. Wang, Electrical stability study of polymer-based organic transistors in ambient air using an active semiconducting/insulating polyblend-based pseudo-bilayer, Mater. Chem. Front., 2020, 4, 1679-1688.
    [43] B. Pierre, Y. Han, Z. P. Fei, D. T. Neil, R. P. Li, M. S. Detlef, S. Natalie, D. A. Thomas, H. Martin, Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material Poly(2,5-bis(3-alkylthiophen-2-yl) thieno [3,2- b]-thiophene (pBTTT), Adv. Funct. Mater., 2015, 25, 7038-7048.

    Chapter 4
    [1] A. Facchetti, Semiconductors for organic transistors, Mater. Today 2007, 10, 28–37.
    [2] J. Smith, R. Hamilton, I. McCulloch, N. S. Stutzmann, M. Heeney, D. D. C. Bradley, T. D. Anthopoulos, Solution-processed organic transistors based on semiconducting blends, J. Mater. Chem. 2010, 20, 2562–2574.
    [3] S. GuÈnes,H. Neugebauer, N. S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells. Chem. Rev., 2007, 107, 1324-1338.
    [4] P. Peumans, A. Yakimov, S. R. Forrest, Small molecular weight organic thin photodetectors and solar cells, J. Appl. Phys, 2003, 93, 3693-3723.
    [5] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, White organic light-emitting diodes with fluorescent tube efficiency, Nature 2009, 459, 234-238.
    [6] X. L. Dai, Z. X. Zhang, Y. H. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang, X. G. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots, Nature, 2014, 515, 96-99.
    [7] G. D. Xia, S. M. Wang, X. R. Zhao, L. M. Zhou, High-performance low-voltage organic transistor memories with room-temperature solution-processed hybrid nanolayer dielectrics, J. Mater. Chem. C, 2013, 1, 3291-3296.
    [8] K. J. Baeg, D. Y. Khim, J. H. Kim, B. D. Yang, M. J. Kang, S. W. Jung, I. K. You, D. Y. Kim, Y. Y. Noh, High-Performance Top-Gated Organic Field-Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory, Adv. Funct. Mater., 2012, 22, 2915–2926.
    [9] Y. Diao, B. C. K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, et al., Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains, Nat. Mater., 2013, 12, 665–671.
    [10] W. H. Li, Q. Liu, Y. Zhang, C. Li, Z. F. He, W. C. H. Choy, P. J. Low, P. Sonar, A. K. K. Kyaw, Biodegradable Materials and Green Processing for Green Electronics, Adv. Mater., 2020, 32, 2001591.
    [11] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. A. Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. A. Guzik, M. F. Toney, Z. N. Bao, Tuning charge transport in solution-sheared organic semiconductors using lattice strain, Nature, 2011, 480, 504-508.
    [12] N. Karl, Charge carrier transport in organic semiconductors, Synth. Met., 2003, 133-134, 649-657.
    [13] P. Friederich, V. Meded, A. Poschlad, T. Neumann, V. Rodin, V. Stehr, F. Symalla, D. Danilov, G. Lüdemann, R. F. Fink, et al., Molecular Origin of the Charge Carrier Mobility in Small Molecule Organic Semiconductors, Adv. Funct. Mater., 2016, 26, 5757-5763.
    [14] R. Schmechel, H. von Seggern, Electronic traps in organic transport layers, Phys. Status Solidi (a), 2004, 201, 1215-1235.
    [15] B. Jun, C. H. Lee, S. U. Lee, Strain-induced carrier mobility modulation in organic semiconductors, J. Ind. Eng. Chem., 2022, 107, 137-144.
    [16] K. Puntambekar, J. Dong, G. Haugstad, C. D. Frisbie, Structural and Electrostatic Complexity at a Pentacene/Insulator Interface, Adv. Funct. Mater., 2006, 16, 879-884.
    [17] A. V. Mühlenen, M. Castellani, M. Schaer, L. Zuppiroli, Controlling charge-transfer at the gate interface of organic field-effect transistors, Phys. Status Solidi (b), 2008, 245, 1170-1174.
    [18] L. Bürgi, T. J. Richards, R. H. Friend, H. Sirringhaus, Close look at charge carrier injection in polymer field-effect transistors, J. Appl. Phys., 2003, 94, 6129-6137.
    [19] B. Lucas, A. E. Amrani, A. Moliton, A. Skaiky, A. El Hajj, M. Aldissi, Charge transport properties in pentacene films: Evaluation of carrier mobility by different techniques, Solid State Electron., 2012, 69, 99-103.
    [20] J. M. P. Alaboson, Q. H.Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, M. C. Hersam, Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers, ACS Nano, 2011, 5, 5223-5232.
    [21] J. F. Chang, K. S. Hou, Y. W. Yang, C.H. Wang, Y. X. Chen, H. D. Ke, Enhanced mobility for increasing on-current and switching ratio of vertical organic field-effect transistors by surface modification with phosphonic acid self-assembled monolayer, Org. Electron., 2020, 81, 105689-1-105689-7.
    [22] Y. Horii, K. Sakaguchi, M. Chikamatsu, R. Azumi, K. Yase, M. Kitagawa, H. Konish, High-Performance Solution-Processed n-Channel Organic Thin-Film Transistors Based on a Long Chain Alkyl-Substituted C60 Derivative, Appl. Phys. Express, 2010, 3, 101601.
    [23] K. Kim, S.M. Oh, J. Hong, C. Jung, J. Seo, Y. J. Jeong, H. S. Lee, S. H. Kim, Electrohydrodynamic jet printing of small-molecule semiconductor crystals on chemically patterned surface for high-performance organic field-effect transistors, Mater. Chem. Phys., 2022, 285, 126165.
    [24] W. Volksen, Condensation polyimides: Synthesis, solution behavior, and imidization characteristics, Adv. Polym. Sci., 1994, 117, 111-164.
    [25] S. H. Jiang, B. Uch, S. Agarwal, A. Greiner, Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges, ACS Appl. Mater. Interfaces, 2017, 9, 32308-32315.
    [26] D. Y. Ji, T. Li, W. P. Hu, Harald Fuchs Recent Progress in Aromatic Polyimide Dielectrics for Organic Electronic Devices and Circuits, Adv. Mater., 2019, 31, 1806070.
    [27] Z. L. Liu, T. P. Yu, Z. T. Wan, Y. R.Wang, Z. Q. Li, J. Yin, X. Gao, Y. D. Xia, Z. G. Liu, High-Performance Pentacene-Based Field-Effect Transistor Memory Using the Electrets of Polymer Blends, Adv. Electron. Mater., 2022, 8, 2101342.
    [28] W. Y. Chou, T. Y. Ho, H. L. Cheng, F. C. Tang, J. H. Chen, Y.W. Wang, Gate field induced ordered electric dipoles in a polymer dielectric for low-voltage operating organic thin-film transistors, RSC Adv., 2013, 3, 20267-20272.
    [29] Y. Baek, S. Lim, E. J. Yoo, L. H. Kim, H. Kim, S. W. Lee, S. H. Kim, C. E. Park, Fluorinated Polyimide Gate Dielectrics for the Advancing the Electrical Stability of Organic Field-Effect Transistors, ACS Appl. Mater. Interfaces, 2014, 6, 15209-15216.
    [30] R. Raveendran, M. A. G. Namboothiry, Bias Stress Stability and Hysteresis in Elastomeric Dielectric Based Solution Processed OFETs, Mater. Res. Bull., 2022, 146, 111596.
    [31] B. Kang, B. Moon, H. H. Choi, E. Song, K. Cho, Molecular Orientation-Dependent Bias Stress Stability in Bottom-Gate Organic Transistors Based on an n-Type Semiconducting Polymer, Adv. Electron. Mater., 2016, 2, 1500380.
    [32] D. Knipp, R. A. Street, A. Vülkel, J. Ho, Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport, J. Appl. Phys., 2003, 93, 347-355.
    [33] W. L. Kalb, B. Batlogg, Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods, Phys. Rev. B, 2010, 81, 035327.
    [34] J. Zaumseil, H. Sirringhaus, Electron and Ambipolar Transport in Organic Field-Effect Transistors, Chem. Rev., 2007, 107, 1296-1323.
    [35] A. A. Ruzaiqi, H. Okamoto, Y. Kubozono, U. Zschieschang, H. Klauk, P. Baran, H. Gleskov, Low-voltage organic thin-film transistors based on [n]phenacenes, Org. Electron., 2019, 73, 286-291.
    [36] A. Kumar, A. Perinot, S. K. Sarkar, D. Gupta, N. F. Zorn, J. Zaumseil, M. Caironi, Low-temperature solution-processed high-capacitance AlOx dielectrics for low-voltage carbon-based transistors, Org. Electron., 2022, 110, 106636.
    [37] D. Kim, C. Kim, T. Earmme, Polyurethane triblock copolymer gate dielectrics for low-voltage organic thin-film transistors, J. Ind. Eng. Chem., 2019, 71, 460-464.
    [38] U. Zschieschang, K. Amsharov, R. T. Weitz, M. Jansen, H. Klauk, Low-voltage organic n-channel thin-film transistors based on a core-cyanated perylene tetracarboxylic diimide derivative, Synth. Met., 2009, 159, 2362-2364.
    [39] K. N. N. Unni, A. K. Pandey, J. M. Nunzi, N-channel organic field-effect transistors using N, N’-ditridecylperylene-3, 4, 9, 10-tetracarboxylic diimide and a polymeric dielectric, Chem. Phys. Lett., 2005, 407, 95-99.
    [40] J. D. Oh, J. W. Kim, D. K. Kim, J. H. Choi, Low-voltage organic transistors and inverters using HfOx dielectrics, Org. Electron., 2016, 30, 131-135.
    [41] F. C. Wu, B. L. Yeh, T. H. Chou, J. S. Chen, H. L. Cheng, W. Y. Chou, Effects of interfacial tension and molecular dipole moment on the electrical characteristics of low-voltage-driven organic electronic devices, Org. Electron., 2018, 59, 374-381.
    [42] H. L. Liao, J. X. Chen, L.Y. Lan, Y. P. Yu, G. M. Zhu, J. Y. Duan, X. Y. Zhu, H. J. Dai, M. F. Xiao, Z. K. Li, et al., Efficient n‑Type Small-Molecule Mixed Ion-Electron Conductors and Application in Hydrogen Peroxide Sensors, ACS Appl. Mater. Interfaces, 2022, 14, 16477-16486.
    [43] Y. S. Lin, B. L. Yeh, M. R. Tsai, H. L. Cheng, S. J. Liu, F. C. Tang, W. Y. Chou, Initial time-dependent current growth phenomenon in n-type organic transistors induced by interfacial dipole effects, J. Appl. Phys., 2015, 117, 104507.
    [44] Y. F. Wang, M. R. Tsai, P. Y. Wang, C. Y. Lin, H. L. Cheng, F. C. Tang, S. L. C. Hsu, C. C. Hsu, W. Y. Chou, Controlling carrier trapping and relaxation with a dipole field in an organic field-effect device, RSC Adv., 2016, 6, 77735-77744.
    [45] Y. F. Wang, M. R. Tsai, Y. S. Lin, F. C. Wu, C. Y. Lin, H. L. Cheng, S. J. Liu, F. C. Tang, W. Y. Chou, High-response organic thin-film memory transistors based on dipole-functional polymer electret layers, Org. Electron., 2015, 26, 359-364.
    [46] W. V. Wang, Y. Zhang, X. Y. Li, Z. Z. Chen, Z. H. Wu, L. Zhang, Z. W. Lin, H. L. Zhang, High performance nonvolatile organic field-effect transistor memory devices based on pyrene diimide derivative, Infomat, 2021, 3, 814-822.

    Chapter 5
    [1] C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid, Y. W. Park, H. Shirakawa, Synthesis of Highly Conducting Films of Derivatives of Polyacetylene, (CH)X, J. Am. Chem. Soc., 1978, 100, 1013-1015.
    [2] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature, 1999, 401, 685-688.
    [3] X. Zhang, B. Wang, L. Huang, W. Huang, Z. Wang, W. Zhu, Y. Chen, Y. L. Mao, A. Facchetti, T. J. Marks, Breath figure–derived porous semiconducting films for organic electronics, Sci. Adv., 2020, 6, 1-9.
    [4] Y. Yang, Y. Hong, X. Wang, Utilizing the Diffusion of Fluorinated Polymers to Modify the Semiconductor/Dielectric Interface in Solution-Processed Conjugated Polymer Field-Effect Transistors, ACS Appl. Mater. Interfaces, 2021, 13, 8682-8691.
    [5] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bre das, M. LoÈ gdlund, W. R. Salaneck, Electroluminescence in conjugated polymers, Nature, 1999, 397, 121-128.
    [6] L. Xu, C. Wang, Y.X. Li, X. H. Xu, L. Zhou, N. Liu, Z. Q. Wu, Crystallization-Driven Asymmetric Helical Assembly of Conjugated Block Copolymers and the Aggregation Induced White-light Emission and Circularly Polarized Luminescence, Angew. Chem. Int. Ed., 2020, 59,16675-16682.
    [7] D. W. Zhang, M. Li and C. F. Chen, Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes, Chem. Soc. Rev., 2020, 49, 1331-1343.
    [8] M. Grätzel, Photoelectrochemical cells, Nature, 2001, 414, 338-344.
    [9] Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao and J. Hou, Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency, Adv. Mater., 2020, 32, 1908205-1-1908205-7.
    [10] J. S. M. Lee, A. I. Cooper, Advances in Conjugated Microporous Polymers, Chem. Rev., 2020, 120, 2171-2214.
    [11] Z. H. Xiong, D. Wu, Z. V. Vardeny, J. Shi, Giant magnetoresistance in organic spin-valves, Nature, 2004, 427, 821-824.
    [12] S. Kangoa, S. Kaliab, A. Celli, J. Njugunad, Y. Habibie, R. Kumar, Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites-A review, Prog. Polym. Sci., 2013, 38, 1232-1261.
    [13] C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, Unravelling the role of the interface for spin injection into organic semiconductors A. Fert, Nat. Phys., 2010, 6, 615-620.
    [14] T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, J. S. Moodera, Room-Temperature Tunnel Magnetoresistance and Spin-Polarized Tunneling through an Organic Semiconductor Barrier, Phys. Rev. Lett., 2007, 98, 016601-1-016601-4.
    [15] A. R. Rocha, V. M. García-suárez, S. W. Bailey, C. J. Lambert, J. Ferrer, S. Sanvito, Towards molecular spintronics, Nat. Mater., 2005, 4, 335-339.
    [16] T. Shimada, H. Nogawa, T. Nogucghi, Y. Furubyashi, Y. Yamamoto, Y. Hirose, T. Hitosugi, T. Hasegawa, Magnetotransport Properties of Fe/Pentacene/Co: TiO2 Junctions with Fe Top Contact Electrodes Prepared by Thermal Evaporation and Pulsed Laser Deposition, Jpn. J. Appl. Phys., 2008, 47, 1184-1187.
    [17] J. He, L. Zheng, D. Feng, M. Liu, D. Shao, Z. Lu, X. Zhang, W. Wang, W. Wang, F. Lu, H. Dong, Y. Cheng, H. Liu, H. Liu, R. Zheng, Interfacial effects on the microstructures and magnetoresistance of Ni80Fe20/P3HT/Fe organic spin valves, J. Alloys Compd., 2018, 769, 991-997.
    [18] W. Y. Chou, S. K. Peng, F. H. Chang, H. L. Cheng, J. J. Ruan, T. Y. Ho, Ferromagnetism above Room Temperature in a Ni-Doped Organic-Based Magnetic Semiconductor, ACS Appl. Mater. Interfaces, 2021, 13, 34962-34972.
    [19] K. Hayashi, H. Tomonaga, T. Matsuyama, J. Ida, Facile synthesis, characterization of various polymer immobilized on magnetite nanoparticles applying the coprecipitation method, J Appl Polym Sci., 2011, 139, 1-9.
    [20] R. J. da Silva, G. C. Pedro, F. D. S. Gorza, B. G. Maciel, G. P. Ratkovski, L. C. M. Sanchez, J. C. M. Llamas, A. E. C. Guajardo, C. P. de Melo, DNA purification using a novel γ-Fe2O3/PEDOT hybrid nanocomposite, Anal. Chim. Acta., 2021, 1178, 338762-1-338762-14.
    [21] M. Wu, Y. D. Zhang, S. Hui, T. D. Xiao, S. Ge, W. A. Hines, J. I. Budnick, Structure and magnetic properties of SiO2-coated Co nanoparticles, J. Appl. Phys., 2002, 92, 491-495.
    [22] Z. M. Avval, L. Malekpour, F. Raeisi, A. Babapoor, S. M. Mousavi, S. A. Hashemi, M. Salari, Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application, Drug Metab Rev., 2019, 52, 157-184.
    [23] S. Xuan, F. Wang, J. M. Y. Lai, K. W. Y. Sham, Y. X. J. Wang, S. F. Lee, J. C. Yu, C. H. K. Cheng, K. C. F. Leung, Synthesis of Biocompatible, Mesoporous Fe3O4 Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications, ACS Appl. Mater. Interfaces, 2011, 3, 237-244.
    [24] L. Jose, C. Lee, A. Hwang, J. H. Park, J. K. Song, H. J. Paik, Magnetically steerable Fe3O4@Ni2+-NTA-polystyrene nanoparticles for the immobilization and separation of his6-protein, Eur. Polym. J., 2019, 112, 524-529.
    [25] W. Shao, G. Tai, C. Hou, Z. Wu, Z. Wu, X. Liang, Borophene-Functionalized Magnetic Nanoparticles: Synthesis and Memory Device Application, ACS Appl. Electron. Mater., 2021, 3, 1133-1141.
    [26] J. Pan, R. Zhang, J. Ling, M. Wang, Z. Li, Z. Zhen, L. He, H. Zhu, Controllable preparation and microwave absorption properties of shape anisotropic Fe3O4 nanobelts, J. Materiomics, 2021, 7, 957-966.
    [27] V. G. Truong, P. H. Binh, P. Renucci, M. Tran, Y. Lu, H. Jaffrès, J. M. George, C. Deranlot, A. Lemaître, T. Amand, X. Marie, High speed pulsed electrical spin injection in spin-light emitting diode, Appl. Phys. Lett., 2009, 94, 141109-1-141109-3.
    [28] Q. M. Peng, X. J. Li, F. Li, Time-resolved spin-dependent processes in magnetic field effects in organic semiconductors, J. Appl. Phys., 2012, 112, 114512-1-114512-6.
    [29] P. Yuan, X. Qiao, D. Yan, D. Ma, Magnetic field effects on the quenching of triplet excitons in exciplex-based organic light emitting diodes, J. Mater. Chem. C, 2018, 6, 5721-5726.
    [30] M. Furis, J. A. Hollingsworth, V. I. Klimov, S. A. Crooker, Time- and Polarization-Resolved Optical Spectroscopy of Colloidal CdSe Nanocrystal Quantum Dots in High Magnetic Fields, J. Phys. Chem. B, 2005, 109, 15332-15338.
    [31] I. Karimzadeh, M. Aghazadeh, M. R. Ganjali, T. Doroudi, P. H. Kolivand, Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route, J. Magn. Magn. Mater., 2017, 433, 148-154.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE