| 研究生: |
王孝瑄 Wang, Hsiao-Hsuan |
|---|---|
| 論文名稱: |
研究介白素-20與眼睛疾病的關聯並探討具有潛力的治療標靶 Study the association of IL-20 with eye diseases and explore the potential target for treatment |
| 指導教授: |
張明熙
Chang, Ming-Shi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 乾眼症 、發炎反應 、促發炎細胞激素 、介白素二十 、抗介白素二十單株抗體 、高滲透壓 |
| 外文關鍵詞: | Dry eye disease (DED), Inflammation, Pro-inflammatory cytokines, Interleukin-20 (IL-20), Anti-IL-20 monoclonal antibody (7E), Hyperosmolarity |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Otkjaer K., Kragballe K., Johansen C., Funding A.T., Just H., Jensen U.B., Sorensen L.G., Norby P.L., Clausen J.T. and Iversen L. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms. J Invest Dermatol 127(6):1326-1336, 2007.
2. Hsing C.H., Ho C.L., Chang L.Y., Lee Y.L., Chuang S.S. and Chang M.S. Tissue microarray analysis of interleukin-20 expression. Cytokine 35(1-2):44-52, 2006.
3. Hsu Y.H. and Chang M.S. Interleukin-20 antibody is a potential therapeutic agent for experimental arthritis. Arthritis Rheum 62(11):3311-3321, 2010.
4. Chiu Y.S., Wei C.C., Lin Y.J., Hsu Y.H. and Chang M.S. IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology 60(3):1003-1014, 2014.
5. Hsu Y.H., Yang Y.Y., Huwang M.H., Weng Y.H., Jou I.M., Wu P.T., Lin T.Y., Wu L.W. and Chang M.S. Anti-IL-20 monoclonal antibody inhibited inflammation and protected against cartilage destruction in murine models of osteoarthritis. PLoS One 12(4):e0175802, 2017.
6. Hsu Y.H. and Chang M.S. The therapeutic potential of anti-interleukin-20 monoclonal antibody. Cell Transplant 23(4-5):631-639, 2014.
7. Stenderup K., Rosada C., Worsaae A., Clausen J.T. and Norman Dam T. Interleukin-20 as a target in psoriasis treatment. Ann N Y Acad Sci 1110:368-381, 2007.
8. Rich B.E. and Kupper T.S. Cytokines: IL-20 - a new effector in skin inflammation. Curr Biol 11(13):R531-534, 2001.
9. Li H.H., Hsu Y.H., Wei C.C., Lee P.T., Chen W.C. and Chang M.S. Interleukin-20 induced cell death in renal epithelial cells and was associated with acute renal failure. Genes Immun 9(5):395-404, 2008.
10. Hsu Y.H., Wei C.C., Shieh D.B., Chan C.H. and Chang M.S. Anti-IL-20 monoclonal antibody alleviates inflammation in oral cancer and suppresses tumor growth. Mol Cancer Res 10(11):1430-1439, 2012.
11. Deshmane S.L., Kremlev S., Amini S. and Sawaya B.E. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313-326, 2009.
12. Hsu Y.H., Li H.H., Hsieh M.Y., Liu M.F., Huang K.Y., Chin L.S., Chen P.C., Cheng H.H. and Chang M.S. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 54(9):2722-2733, 2006.
13. Huang K.Y., Hsu Y.H., Chen W.Y., Tsai H.L., Yan J.J., Wang J.D., Liu W.L. and Lin R.M. The roles of IL-19 and IL-20 in the inflammation of degenerative lumbar spondylolisthesis. J Inflamm (Lond) 15:19, 2018.
14. Wei C.C., Hsu Y.H., Li H.H., Wang Y.C., Hsieh M.Y., Chen W.Y., Hsing C.H. and Chang M.S. IL-20: biological functions and clinical implications. J Biomed Sci 13(5):601-612, 2006.
15. Hsieh M.Y., Chen W.Y., Jiang M.J., Cheng B.C., Huang T.Y. and Chang M.S. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 7(3):234-242, 2006.
16. Lin P.Y., Tsai S.Y., Cheng C.Y., Liu J.H., Chou P. and Hsu W.M. Prevalence of dry eye among an elderly Chinese population in Taiwan: the Shihpai Eye Study. Ophthalmology 110(6):1096-1101, 2003.
17. Stevenson W., Chauhan S.K. and Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Arch Ophthalmol 130(1):90-100, 2012.
18. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 5(2):75-92, 2007.
19. Lemp M.A., Crews L.A., Bron A.J., Foulks G.N. and Sullivan B.D. Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study. Cornea 31(5):472-478, 2012.
20. Hodges R.R. and Dartt D.A. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res 117:62-78, 2013.
21. Baudouin C., Aragona P., Messmer E.M., Tomlinson A., Calonge M., Boboridis K.G., Akova Y.A., Geerling G., Labetoulle M. and Rolando M. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf 11(4):246-258, 2013.
22. Yamaguchi T. Inflammatory Response in Dry Eye. Invest Ophthalmol Vis Sci 59(14):DES192-DES199, 2018.
23. Argueso P., Balaram M., Spurr-Michaud S., Keutmann H.T., Dana M.R. and Gipson I.K. Decreased levels of the goblet cell mucin MUC5AC in tears of patients with Sjogren syndrome. Invest Ophthalmol Vis Sci 43(4):1004-1011, 2002.
24. Corrales R.M., Narayanan S., Fernandez I., Mayo A., Galarreta D.J., Fuentes-Paez G., Chaves F.J., Herreras J.M. and Calonge M. Ocular mucin gene expression levels as biomarkers for the diagnosis of dry eye syndrome. Invest Ophthalmol Vis Sci 52(11):8363-8369, 2011.
25. Stephens D.N. and McNamara N.A. Altered Mucin and Glycoprotein Expression in Dry Eye Disease. Optom Vis Sci 92(9):931-938, 2015.
26. Wei Y. and Asbell P.A. The core mechanism of dry eye disease is inflammation. Eye Contact Lens 40(4):248-256, 2014.
27. Massingale M.L., Li X., Vallabhajosyula M., Chen D., Wei Y. and Asbell P.A. Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea 28(9):1023-1027, 2009.
28. Messmer E.M., von Lindenfels V., Garbe A. and Kampik A. Matrix Metalloproteinase 9 Testing in Dry Eye Disease Using a Commercially Available Point-of-Care Immunoassay. Ophthalmology 123(11):2300-2308, 2016.
29. Luo L., Li D.Q. and Pflugfelder S.C. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea 26(4):452-460, 2007.
30. Kang W.S., Jung E. and Kim J. Aucuba japonica Extract and Aucubin Prevent Desiccating Stress-Induced Corneal Epithelial Cell Injury and Improve Tear Secretion in a Mouse Model of Dry Eye Disease. Molecules 23(10), 2018.
31. You I.C., Coursey T.G., Bian F., Barbosa F.L., de Paiva C.S. and Pflugfelder S.C. Macrophage Phenotype in the Ocular Surface of Experimental Murine Dry Eye Disease. Arch Immunol Ther Exp (Warsz) 63(4):299-304, 2015.
32. Lee H.S., Amouzegar A. and Dana R. Kinetics of Corneal Antigen Presenting Cells in Experimental Dry Eye Disease. BMJ Open Ophthalmol 1(1):e000078, 2017.
33. Schaumburg C.S., Siemasko K.F., De Paiva C.S., Wheeler L.A., Niederkorn J.Y., Pflugfelder S.C. and Stern M.E. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis. J Immunol 187(7):3653-3662, 2011.
34. Tan X., Sun S., Liu Y., Zhu T., Wang K., Ren T., Wu Z., Xu H. and Zhu L. Analysis of Th17-associated cytokines in tears of patients with dry eye syndrome. Eye (Lond) 28(5):608-613, 2014.
35. Chauhan S.K., El Annan J., Ecoiffier T., Goyal S., Zhang Q., Saban D.R. and Dana R. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol 182(3):1247-1252, 2009.
36. Haber S.L., Benson V., Buckway C.J., Gonzales J.M., Romanet D. and Scholes B. Lifitegrast: a novel drug for patients with dry eye disease. Ther Adv Ophthalmol 11:2515841419870366, 2019.
37. Pflugfelder S.C., Stern M., Zhang S. and Shojaei A. LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease. J Ocul Pharmacol Ther 33(1):5-12, 2017.
38. Donnenfeld E.D., Perry H.D., Nattis A.S. and Rosenberg E.D. Lifitegrast for the treatment of dry eye disease in adults. Expert Opin Pharmacother 18(14):1517-1524, 2017.
39. Datta S., Baudouin C., Brignole-Baudouin F., Denoyer A. and Cortopassi G.A. The Eye Drop Preservative Benzalkonium Chloride Potently Induces Mitochondrial Dysfunction and Preferentially Affects LHON Mutant Cells. Invest Ophthalmol Vis Sci 58(4):2406-2412, 2017.
40. Zhang R., Park M., Richardson A., Tedla N., Pandzic E., de Paiva C.S., Watson S., Wakefield D. and Di Girolamo N. Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocul Surf 18(1):158-169, 2020.
41. Xiong C., Chen D., Liu J., Liu B., Li N., Zhou Y., Liang X., Ma P., Ye C., Ge J. and Wang Z. A rabbit dry eye model induced by topical medication of a preservative benzalkonium chloride. Invest Ophthalmol Vis Sci 49(5):1850-1856, 2008.
42. Lin Z., Liu X., Zhou T., Wang Y., Bai L., He H. and Liu Z. A mouse dry eye model induced by topical administration of benzalkonium chloride. Mol Vis 17:257-264, 2011.
43. Yang Q., Zhang Y., Liu X., Wang N., Song Z. and Wu K. A Comparison of the Effects of Benzalkonium Chloride on Ocular Surfaces between C57BL/6 and BALB/c Mice. Int J Mol Sci 18(3), 2017.
44. Zhang Z., Yang W.Z., Zhu Z.Z., Hu Q.Q., Chen Y.F., He H., Chen Y.X. and Liu Z.G. Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse dry eye model. Invest Ophthalmol Vis Sci 55(5):2963-2974, 2014.
45. Xiao X., He H., Lin Z., Luo P., He H., Zhou T., Zhou Y. and Liu Z. Therapeutic effects of epidermal growth factor on benzalkonium chloride-induced dry eye in a mouse model. Invest Ophthalmol Vis Sci 53(1):191-197, 2012.
46. Chang Y.A., Wu Y.Y., Lin C.T., Kawasumi M., Wu C.H., Kao S.Y., Yang Y.P., Hsu C.C., Hung K.F. and Sun Y.C. Animal models of dry eye: Their strengths and limitations for studying human dry eye disease. J Chin Med Assoc 84(5):459-464, 2021.
47. Hsu Y.H., Chen W.Y., Chan C.H., Wu C.H., Sun Z.J. and Chang M.S. Anti-IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss. J Exp Med 208(9):1849-1861, 2011.
48. Hsu Y.H. and Chang M.S. IL-20 in rheumatoid arthritis. Drug Discov Today 22(6):960-964, 2017.
49. Wang H.H., Hsu Y.H. and Chang M.S. IL-20 bone diseases involvement and therapeutic target potential. J Biomed Sci 25(1):38, 2018.
50. Boehm N., Riechardt A.I., Wiegand M., Pfeiffer N. and Grus F.H. Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Invest Ophthalmol Vis Sci 52(10):7725-7730, 2011.
51. Ho T.C., Yeh S.I., Chen S.L. and Tsao Y.P. Integrin alphav and Vitronectin Prime Macrophage-Related Inflammation and Contribute the Development of Dry Eye Disease. Int J Mol Sci 22(16), 2021.
52. Shinzawa M., Dogru M., Miyasaka K., Kojima T. and Tsubota K. The Application of Strip Meniscometry to the Evaluation of Tear Volume in Mice. Invest Ophthalmol Vis Sci 60(6):2088-2091, 2019.
53. Wei C.C., Chen W.Y., Wang Y.C., Chen P.J., Lee J.Y., Wong T.W., Chen W.C., Wu J.C., Chen G.Y., Chang M.S. and Lin Y.C. Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol 117(1):65-72, 2005.
54. Chen Z., Tong L., Li Z., Yoon K.C., Qi H., Farley W., Li D.Q. and Pflugfelder S.C. Hyperosmolarity-induced cornification of human corneal epithelial cells is regulated by JNK MAPK. Invest Ophthalmol Vis Sci 49(2):539-549, 2008.
55. Khandekar N., Willcox M.D., Shih S., Simmons P., Vehige J. and Garrett Q. Decrease in hyperosmotic stress-induced corneal epithelial cell apoptosis by L-carnitine. Mol Vis 19:1945-1956, 2013.
56. Stevenson W., Chen Y., Lee S.M., Lee H.S., Hua J., Dohlman T., Shiang T. and Dana R. Extraorbital lacrimal gland excision: a reproducible model of severe aqueous tear-deficient dry eye disease. Cornea 33(12):1336-1341, 2014.
57. Barabino S., Shen L., Chen L., Rashid S., Rolando M. and Dana M.R. The controlled-environment chamber: a new mouse model of dry eye. Invest Ophthalmol Vis Sci 46(8):2766-2771, 2005.
58. Kumar R., DuMond J.F., Khan S.H., Thompson E.B., He Y., Burg M.B. and Ferraris J.D. NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain. Proc Natl Acad Sci U S A 117(33):20292-20297, 2020.
59. Ip W.K. and Medzhitov R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat Commun 6:6931, 2015.
60. Meng Y.F., Pu Q., Dai S.Y., Ma Q., Li X. and Zhu W. Nicotinamide Mononucleotide Alleviates Hyperosmolarity-Induced IL-17a Secretion and Macrophage Activation in Corneal Epithelial Cells/Macrophage Co-Culture System. J Inflamm Res 14:479-493, 2021.
61. Reyes J.L., Vannan D.T., Eksteen B., Avelar I.J., Rodriguez T., Gonzalez M.I. and Mendoza A.V. Innate and Adaptive Cell Populations Driving Inflammation in Dry Eye Disease. Mediators Inflamm 2018:2532314, 2018.
62. Kessal K., Daull P., Cimbolini N., Feraille L., Grillo S., Docquier M., Baudouin C., Brignole-Baudouin F. and Garrigue J.S. Comparison of Two Experimental Mouse Dry Eye Models through Inflammatory Gene Set Enrichment Analysis Based on a Multiplexed Transcriptomic Approach. Int J Mol Sci 22(19), 2021.
63. Wu X., Chen X., Ma Y., Lin X., Yu X., He S., Luo C. and Xu W. Analysis of tear inflammatory molecules and clinical correlations in evaporative dry eye disease caused by meibomian gland dysfunction. Int Ophthalmol 40(11):3049-3058, 2020.
64. Huang W., Tourmouzis K., Perry H., Honkanen R.A. and Rigas B. Animal models of dry eye disease: Useful, varied and evolving (Review). Exp Ther Med 22(6):1394, 2021.
65. Hessen M. and Akpek E.K. Dry eye: an inflammatory ocular disease. J Ophthalmic Vis Res 9(2):240-250, 2014.
66. Cavet M.E., Harrington K.L., Ward K.W. and Zhang J.Z. Mapracorat, a novel selective glucocorticoid receptor agonist, inhibits hyperosmolar-induced cytokine release and MAPK pathways in human corneal epithelial cells. Mol Vis 16:1791-1800, 2010.
67. Baudouin C., Messmer E.M., Aragona P., Geerling G., Akova Y.A., Benitez-del-Castillo J., Boboridis K.G., Merayo-Lloves J., Rolando M. and Labetoulle M. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction. Br J Ophthalmol 100(3):300-306, 2016.
68. Ren Y., Lu H., Reinach P.S., Zheng Q., Li J., Tan Q., Zhu H. and Chen W. Hyperosmolarity-induced AQP5 upregulation promotes inflammation and cell death via JNK1/2 Activation in human corneal epithelial cells. Sci Rep 7(1):4727, 2017.
69. Neuhofer W. Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr Genomics 11(8):584-590, 2010.
70. Aramburu J. and Lopez-Rodriguez C. Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Front Immunol 10:535, 2019.
71. Zhou D., Chen Y.T., Chen F., Gallup M., Vijmasi T., Bahrami A.F., Noble L.B., van Rooijen N. and McNamara N.A. Critical involvement of macrophage infiltration in the development of Sjogren's syndrome-associated dry eye. Am J Pathol 181(3):753-760, 2012.
72. Ley K. M1 Means Kill; M2 Means Heal. J Immunol 199(7):2191-2193, 2017.
73. Hsu Y.H., Wu C.H., Chiu C.J., Chen W.T., Chang Y.C., Wabitsch M. and Chang M.S. IL-20 is involved in obesity by modulation of adipogenesis and macrophage dysregulation. Immunology 164(4):817-833, 2021.
74. Park B., Jo K., Lee T.G., Lee I.S., Kim J.S. and Kim C.S. Polygonum cuspidatum stem extract (PSE) ameliorates dry eye disease by inhibiting inflammation and apoptosis. J Exerc Nutrition Biochem 23(4):14-22, 2019.
75. Ju H.J., Byun Y.S., Mok J.W. and Joo C.K. The Blockade of IL6 Counterparts the Osmolar Stress-Induced Apoptosis in Human Conjunctival Epithelial Cells. J Ophthalmol 2016:8350134, 2016.
76. Sosne G., Albeiruti A.R., Hollis B., Siddiqi A., Ellenberg D. and Kurpakus-Wheater M. Thymosin beta4 inhibits benzalkonium chloride-mediated apoptosis in corneal and conjunctival epithelial cells in vitro. Exp Eye Res 83(3):502-507, 2006.
77. Vitoux M.A., Kessal K., Melik Parsadaniantz S., Claret M., Guerin C., Baudouin C., Brignole-Baudouin F. and Reaux-Le Goazigo A. Benzalkonium chloride-induced direct and indirect toxicity on corneal epithelial and trigeminal neuronal cells: proinflammatory and apoptotic responses in vitro. Toxicol Lett 319:74-84, 2020.
78. Machiele R., Lopez M.J. and Czyz C.N. Anatomy, Head and Neck, Eye Lacrimal Gland. StatPearls, Treasure Island (FL), 2022.
79. Singh S., Shanbhag S.S. and Basu S. Palpebral lobe of the human lacrimal gland: morphometric analysis in normal versus dry eyes. Br J Ophthalmol 105(10):1352-1357, 2021.
80. Shinomiya K., Ueta M. and Kinoshita S. A new dry eye mouse model produced by exorbital and intraorbital lacrimal gland excision. Sci Rep 8(1):1483, 2018.
81. Chauhan S.K. and Dana R. Role of Th17 cells in the immunopathogenesis of dry eye disease. Mucosal Immunol 2(4):375-376, 2009.
82. Sadrai Z., Stevenson W., Okanobo A., Chen Y., Dohlman T.H., Hua J., Amparo F., Chauhan S.K. and Dana R. PDE4 inhibition suppresses IL-17-associated immunity in dry eye disease. Invest Ophthalmol Vis Sci 53(7):3584-3591, 2012.
83. Nichols K.K., Holland E., Toyos M.M., Peace J.H., Majmudar P., Raychaudhuri A., Hamdani M., Roy M. and Shojaei A. Ocular comfort assessment of lifitegrast ophthalmic solution 5.0% in OPUS-3, a Phase III randomized controlled trial. Clin Ophthalmol 12:263-270, 2018.
84. Castelli M.S., McGonigle P. and Hornby P.J. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect 7(6):e00535, 2019.
85. Senolt L., Leszczynski P., Dokoupilova E., Gothberg M., Valencia X., Hansen B.B. and Canete J.D. Efficacy and Safety of Anti-Interleukin-20 Monoclonal Antibody in Patients With Rheumatoid Arthritis: A Randomized Phase IIa Trial. Arthritis Rheumatol 67(6):1438-1448, 2015.
校內:2027-08-08公開