簡易檢索 / 詳目顯示

研究生: 廖柏勛
Liao, Po-Hsun
論文名稱: 以氮化鎵材料作為光電極於光電化學之研究
Study on Gallium Nitride-based Material as Photoelectrode in Photoelectrochemistry
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 126
中文關鍵詞: 氫氣氮化鎵光電極光電化學氯化鈉海水
外文關鍵詞: Hydrogen, Gallium Nitride (GaN), Photoelectrode, Photoelectrochemistry (PEC), Sodium Chloride (NaCl), Seawater
相關次數: 點閱:133下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源一直是人類所重視的議題,較為熟悉的能源包含煤礦、石油以及天然氣,這些能源在人類的工業發展時期中是非常重要的。可是這些能源皆屬於消耗性能源,而且在使用這些能源的過程中會產生溫室氣體,導致全球暖化、海平面上升以及影響動植物的生態環境。氫能不屬於上述的消耗性能源,而且使用氫能的過程中只會產生水的副產物,因此也被視為對環境友善的能源之一。氫大約占宇宙質量的75%,是相當普遍存在的元素之一,通常是以化合物的形態儲存於水中。氫能所帶動的相關產業相當廣泛,其中可分類為產氫、儲氫以及運氫三大部分。本文著重於產氫的研究項目之中。如果可以透過再生能源獲得氫氣,就能夠使用真正的乾淨能源,而且降低人類對於消耗性能源的依賴。本研究主要探討的材料是氮化鎵半導體,將氮化鎵半導體作為光電解水的光電極。本文將會討論不同的光電極於光電化學反應中。此外,氯化鈉以及海水做為本研究的電解液。期許往後能夠邁入實用階段。

    Energy has always been one of the issues that humans have valued. The more familiar energy sources include coal, oil and natural gas, which were important in the industrial development of mankind. However, these energy sources are consumable energy sources, and greenhouse gases are generated during use, leading to global warming, rising sea levels and the ecological environment affecting animals and plants. Hydrogen energy is not a waste energy source as described above, and the use of hydrogen energy source only produces water by-products and is therefore considered one of the environmentally friendly energy sources. Hydrogen, which accounts for about 75% of the mass of the universe, is one of the most ubiquitous elements and is usually stored in water in the form of a compound. The related industries driven by hydrogen energy are quite extensive, and that can be classified into three parts: hydrogen production, hydrogen storage and hydrogen transportation. This article focuses on research projects that produce hydrogen. If we can get hydrogen through renewable energy, we can use real clean energy and reduce human dependence on consumable energy. The material studied in this study is gallium nitride (GaN), that was used as a photoelectrode for photoelectrolysis. This article will discuss the different photoelectrodes in photoelectrochemical reaction. In addition, sodium chloride (NaCl) and seawater were used as electrolytes for this study. It is expected to be able to enter the practical stage in the future.

    Contents 摘要...................II Abstract................III 誌謝...................IV Contents..................V Table Captions..............VII Figure Captions..............VIII Chapter 1.................1 Introduction................1 1.1 Background of Research............1 1.2 Literature Review.............8 1.3 Purpose and Motivation...........11 References in Chapter 1............24 Chapter 2................29 Undoped GaN with silicon implanted was used as a photoelectrode in photoelectrochemical reaction....29 2.1 Introduction...............29 2.2 Materials and Experimental Methods.......31 2.3 Results and Discussion...........32 2.4 Summary................33 References in Chapter 2............47 Chapter 3................49 Hydrogen and formic acid produced by photoelectrochemical water decomposition of a GaN film decorated with Ag nanoparticles as a photoelectrode........49 3.1 Introduction...............49 3.2 Materials and Experimental Methods.......51 3.3 Results and Discussion...........53 3.4 Summary................59 References in Chapter 3............73 Chapter 4................77 Fabricating a rough silicon dioxide layer on n-GaN working electrode to increase incident light flux in photoelectrochemical reaction..........77 4.1 Introduction...............77 4.2 Materials and Experiment Methods.......80 4.3 Results and Discussions..........83 4.4 Summary................86 References in Chapter 4............95 Chapter 5.................100 Use of an aluminum gallium nitride/gallium nitride heteroepitaxial film as a photoelectrode in seawater, increasing productivity of hydrogen generation and carbon dioxide reduction.............100 5.1 Introduction..............100 5.2 Materials and Experimental Methods......102 5.3 Results and Discussion..........104 5.4 Summary...............107 References in Chapter 5...........117 Chapter 6.................121 Conclusions and Future Works..........121 6.1 Conclusions...............121 6.2 Future Works..............122 Publication List..............123

    References in Chapter 1
    [1] P. A. Østergaard and K. Sperling, “Towards Sustainable Energy Planning and Management,” International Journal of Sustainable Energy Planning and Management, pp. 1-5 Pages, 2014.
    [2] C. Thomas, “Market penetration scenarios for fuel cell vehicles,” International Journal of Hydrogen Energy, vol. 23, no. 10, pp. 949–966, 1998.
    [3] M. G. Walter et al., “Solar Water Splitting Cells,” Chem. Rev., vol. 110, no. 11, pp. 6446–6473, 2010.
    [4] M. Grätzel, “Photoelectrochemical cells,” vol. 414, p. 7, 2001.
    [5] S. Licht, “Multiple Band Gap Semiconductor/Electrolyte Solar Energy Conversion,” J. Phys. Chem. B, vol. 105, no. 27, pp. 6281–6294, 2001.
    [6] J. Lede, F. Lapicque, and J. Villermaux, “Production of hydrogen by direct thermal decomposition of water,” International Journal of Hydrogen Energy, vol. 8, no. 9, pp. 675–679, 1983.
    [7] W. Kreuter, “Electrolysis: The important energy transformer in a world of sustainable energy,” International Journal of Hydrogen Energy, vol. 23, no. 8, pp. 661–666, 1998.
    [8] O. Khaselev, “A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting,” Science, vol. 280, no. 5362, pp. 425–427, 1998.
    [9] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972.
    [10] A. W. Bott and K. Avenue, “Electrochemistry of Semiconductors,” Current Separations, p. 5, 1998.
    [11] R. van de Krol and M. Grätzel, Eds., Photoelectrochemical hydrogen production. New York: Springer, 2012.
    [12] V. Mahajan, S. Mohapatra, and M. Misra, “Stability of TiO2 nanotube arrays in photoelectrochemical studies,” International Journal of Hydrogen Energy, vol. 33, no. 20, pp. 5369–5374, 2008.
    [13] H. Döscher, J. L. Young, J. F. Geisz, J. A. Turner, and T. G. Deutsch, “Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance,” Energy Environ. Sci., vol. 9, no. 1, pp. 74–80, 2016.
    [14] N. Kelly and T. Gibson, “Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting,” International Journal of Hydrogen Energy, vol. 31, no. 12, pp. 1658–1673, 2006.
    [15] K. Maeda et al., “GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting,” J. Am. Chem. Soc., vol. 127, no. 23, pp. 8286–8287, Jun. 2005.
    [16] S. Yotsuhashi et al., “CO2 Conversion with Light and Water by GaN Photoelectrode,” Jpn. J. Appl. Phys., vol. 51, no. 2, p. 02BP07, 2012.
    [17] A. K. Ghosh, “Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes,” J. Electrochem. Soc., vol. 124, no. 10, p. 1516, 1977.
    [18] H. P. Maruska and A. K. Ghosh, “Transition-metal dopants for extending the response of titanate photoelectrolysis anodes,” Solar Energy Materials, vol. 1, no. 3–4, pp. 237–247, 1979.
    [19] M. Halmann, “Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells,” Nature, vol. 275, no. 5676, pp. 115–116, 1978.
    [20] A. Currao, “Photoelectrochemical Water Splitting,” CHIMIA, vol. 61, no. 12, pp. 815–819, 2007.
    [21] A. Siegel and T. Schott, “Optimization of photovoltaic hydrogen production,” International Journal of Hydrogen Energy, vol. 13, no. 11, pp. 659–675, 1988.
    [22] W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S.-H. Baeck, and E. W. McFarland, “A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis,” Solar Energy Materials and Solar Cells, vol. 77, no. 3, pp. 229–237, 2003.
    [23] C. Terashima et al., “Charge Separation in TiO 2 /BDD Heterojunction Thin Film for Enhanced Photoelectrochemical Performance,” ACS Appl. Mater. Interfaces, vol. 8, no. 3, pp. 1583–1588, 2016.
    [24] S. Zhang, X. Gu, Y. Zhao, and Y. Qiang, “Enhanced Photoelectrochemical Performance of TiO2 Nanorod Arrays by a 500°C Annealing in Air: Insights into the Mechanism,” Journal of Elec Materi, vol. 45, no. 1, pp. 648–653, 2016.
    [25] P. Varadhan et al., “Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting,” Nano Lett., vol. 17, no. 3, pp. 1520–1528, 2017.
    [26] A. Wu et al., “Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN) 1−x (ZnO) x solid solution,” Dalton Trans., vol. 46, no. 8, pp. 2643–2652, 2017.
    [27] J. K. Sheu, P. H. Liao, T. C. Huang, K. J. Chiang, W. C. Lai, and M. L. Lee, “InGaN-based epitaxial films as photoelectrodes for hydrogen generation through water photoelectrolysis and CO2 reduction to formic acid,” Solar Energy Materials and Solar Cells, vol. 166, pp. 86–90, 2017.
    [28] Jinn-Kong Sheu, Ming-Lun Lee, and Yu-Cheng Lin, “Surface Plasmon-Enhanced GaN Metal–Insulator–Semiconductor Ultraviolet Detectors With Ag Nanoislands Embedded in a Silicon Dioxide Gate Layer,” IEEE J. Select. Topics Quantum Electron., vol. 20, no. 6, pp. 137–141, 2014.
    [29] K. R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D. A. Tryk, and A. Fujishima, “Facile Fabrication and Photocatalytic Application of Ag Nanoparticles-TiO2 Nanofiber Composites,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 4, pp. 3692-3695, 2011.
    [30] K. R. Reddy, K. V. Karthik, S. B. B. Prasad, S. K. Soni, H. M. Jeong, and A. V. Raghu, “Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts,” Polyhedron, vol. 120, pp. 169–174, 2016.
    [31] K. R. Reddy, M. Hassan, and V. G. Gomes, “Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis,” Applied Catalysis A: General, vol. 489, pp. 1–16, 2015.
    [32] K. R. Reddy, V. G. Gomes, and M. Hassan, “Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis,” Mater. Res. Express, vol. 1, no. 1, p. 015012, 2014.
    [33] A. J. Nozik, “Electrode materials for photoelectrochemical devices,” Journal of Crystal Growth, vol. 39, no. 1, pp. 200–209, 1977.
    [34] R. C. Kainthla, “Significant Efficiency Increase in Self-Driven Photoelectrochemical Cell for Water Photoelectrolysis,” J. Electrochem. Soc., vol. 134, no. 4, p. 841, 1987.
    [35] W. Luo et al., “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett., vol. 92, no. 26, p. 262110, 2008.
    [36] O. Kruse, J. Rupprecht, J. H. Mussgnug, G. C. Dismukes, and B. Hankamer, “Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies,” Photochem. Photobiol. Sci., vol. 4, no. 12, p. 957, 2005.
    [37] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers. Springer Science & Business Media, 2013.
    [38] B. Jahnen et al., “Pinholes, Dislocations and Strain Relaxation in InGaN,” Materials Research Society Internet Journal of Nitride Semiconductor Research, vol. 3, p. 39, 1998.
    [39] L. Qiao et al., “Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres,” Applied Energy, vol. 88, no. 3, pp. 848–852, 2011.
    [40] W. J. Yoo, C. Yang, G. Zhang, H. M. Li, Y. J. Park, and J. M. Kim, “Localized Surface Plasmon Resonances by Ag Nanoparticles on SiN for Solar Cell Application,” J. Korean Phy. Soc., vol. 56, no. 5, pp. 1488–1491, 2010.
    [41] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett., vol. 86, no. 6, p. 063106, 2005.
    [42] S.-K. Kim et al., “The effect of localized surface plasmon on the photocurrent of silicon nanocrystal photodetectors,” Appl. Phys. Lett., vol. 94, no. 18, p. 183108, 2009.
    [43] X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res Lett, vol. 6, no. 1, p. 199, 2011.
    [44] D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology, vol. 19, no. 34, p. 345201, 2008.
    [45] S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B, vol. 103, no. 40, pp. 8410–8426, 1999.
    [46] S. C. Warren and E. Thimsen, “Plasmonic solar water splitting,” Energy Environ. Sci., vol. 5, no. 1, pp. 5133–5146, 2012.
    [47] A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter, and S. Link, “Probing a Century Old Prediction One Plasmonic Particle at a Time,” Nano Lett., vol. 10, no. 4, pp. 1398–1404, 2010.
    [48] A. Melis, L. Zhang, M. Forestier, M. L. Ghirardi, and M. Seibert, “Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii,” Plant Physiol., vol. 122, no. 1, pp. 127–136, 2000.

    References in Chapter 2
    [1] J. A. Turner, “A Realizable Renewable Energy Future,” Science, vol. 285, no. 5428, pp. 687–689, 1999.
    [2] A. Yilanci, I. Dincer, and H. K. Ozturk, “A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications,” Progress in Energy and Combustion Science, vol. 35, no. 3, pp. 231–244, 2009.
    [3] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, p. 37, 1972.
    [4] K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1 − xN and InyGa1 − yN Alloys,” J. Electrochem. Soc., vol. 154, no. 2, pp. B175–B179, 2007.
    [5] J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett., vol. 93, no. 16, p. 162107, 2008.
    [6] Y.-S. Chen, C.-H. Liao, C.-T. Kuo, R. C.-C. Tsiang, and H.-C. Wang, “Indium droplet formation in InGaN thin films with single and double heterojunctions prepared by MOCVD,” Nanoscale Res Lett, vol. 9, no. 1, p. 334, 2014.
    [7] D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, “Critical thickness calculations for InGaN/GaN,” Journal of Crystal Growth, vol. 303, no. 1, pp. 314–317, 2007.
    [8] M. Leyer, J. Stellmach, Ch. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0001) GaN,” Journal of Crystal Growth, vol. 310, no. 23, pp. 4913–4915, 2008.
    [9] Y. Iwaki, M. Ono, K. Yamaguchi, K. Kusakabe, K. Fujii, and K. Ohkawa, “Nitride photocatalyst to generate hydrogen gas from water,” physica status solidi c, vol. 5, no. 6, pp. 2349–2351, 2008.
    [10] K. Koike, A. Nakamura, M. Sugiyama, Y. Nakano, and K. Fujii, “Surface stability of n-type GaN depending on carrier concentration and electrolytes under photoelectrochemical reactions,” physica status solidi c, vol. 11, no. 3–4, pp. 821–823, 2014.
    [11] S.-Y. Liu et al., “Hydrogen gas generation using n-GaN photoelectrodes with immersed Indium Tin Oxide ohmic contacts,” Opt. Express, vol. 19, no. S6, p. A1196, 2011.
    [12] J. L. Weyher, F. D. Tichelaar, H. W. Zandbergen, L. Macht, and P. R. Hageman, “Selective photoetching and transmission electron microscopy studies of defects in heteroepitaxial GaN,” Journal of Applied Physics, vol. 90, no. 12, pp. 6105–6109, 2001.
    [13] J. K. Sheu et al., “Characterization of Si implants in p-type GaN,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 4, pp. 767–772, 2002.
    [14] J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys.: Condens. Matter, vol. 14, no. 22, pp. R657–R702, 2002.

    References in Chapter 3
    [1] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, p. 37, 1972.
    [2] M. Mondal, S. Khanra, O. N. Tiwari, K. Gayen, and G. N. Halder, “Role of carbonic anhydrase on the way to biological carbon capture through microalgae—A mini review,” Environmental Progress & Sustainable Energy, vol. 35, no. 6, pp. 1605–1615, 2016.
    [3] S. Jin, “What Else Can Photoelectrochemical Solar Energy Conversion Do Besides Water Splitting and CO2 Reduction?,” ACS Energy Lett., vol. 3, no. 10, pp. 2610–2612, 2018.
    [4] M. Ma, K. Liu, J. Shen, R. Kas, and W. A. Smith, “In Situ Fabrication and Reactivation of Highly Selective and Stable Ag Catalysts for Electrochemical CO2 Conversion,” ACS Energy Lett., vol. 3, no. 6, pp. 1301–1306, 2018.
    [5] M. Liu et al., “Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration,” Nature, vol. 537, no. 7620, pp. 382–386, 2016.
    [6] A. J. Martín, G. O. Larrazábal, and J. Pérez-Ramírez, “Towards sustainable fuels and chemicals through the electrochemical reduction of CO2 : lessons from water electrolysis,” Green Chemistry, vol. 17, no. 12, pp. 5114–5130, 2015.
    [7] J. Shen et al., “Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin,” Nature Communications, vol. 6, p. 8177, 2015.
    [8] S. Oh et al., “Hole-Selective CoOx/SiOx/Si Heterojunctions for Photoelectrochemical Water Splitting,” ACS Catal., vol. 8, no. 10, pp. 9755–9764, 2018.
    [9] H. Zhang et al., “A p-Si/NiCoSe x core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy & Environmental Science, vol. 9, no. 10, pp. 3113–3119, 2016.
    [10] Y. H. Lee, J. Kim, and J. Oh, “Wafer-Scale Ultrathin, Single-Crystal Si and GaAs Photocathodes for Photoelectrochemical Hydrogen Production,” ACS Appl. Mater. Interfaces, vol. 10, no. 39, pp. 33230–33237, 2018.
    [11] M. J. Shearer, W. Li, J. G. Foster, M. J. Stolt, R. J. Hamers, and S. Jin, “Removing Defects in WSe2 via Surface Oxidation and Etching to Improve Solar Conversion Performance,” ACS Energy Lett., vol. 4, no. 1, pp. 102–109, 2019.
    [12] R. K. Biroju et al., “Hydrogen Evolution Reaction Activity of Graphene–MoS2 van der Waals Heterostructures,” ACS Energy Lett., vol. 2, no. 6, pp. 1355–1361, 2017.
    [13] K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1 − xN and InyGa1 − yN Alloys,” J. Electrochem. Soc., vol. 154, no. 2, pp. B175–B179, 2007.
    [14] M. Valenti, M. P. Jonsson, G. Biskos, A. Schmidt-Ott, and W. A. Smith, “Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting,” Journal of Materials Chemistry A, vol. 4, no. 46, pp. 17891–17912, 2016.
    [15] Y. Dou, J. Zhou, A. Zhou, J.-R. Li, and Z. Nie, “Visible-light responsive MOF encapsulation of noble-metal-sensitized semiconductors for high-performance photoelectrochemical water splitting,” Journal of Materials Chemistry A, vol. 5, no. 36, pp. 19491–19498, 2017.
    [16] K. Kumar Paul et al., “Strongly enhanced visible light photoelectrocatalytic hydrogen evolution reaction in an n-doped MoS2 /TiO2 (B) heterojunction by selective decoration of platinum nanoparticles at the MoS2 edge sites,” Journal of Materials Chemistry A, vol. 6, no. 45, pp. 22681–22696, 2018.
    [17] M. Mehta et al., “Hydrogen treated anatase TiO2 : a new experimental approach and further insights from theory,” Journal of Materials Chemistry A, vol. 4, no. 7, pp. 2670–2681, 2016.
    [18] Y.-C. Yen, J.-A. Chen, S. Ou, Y.-S. Chen, and K.-J. Lin, “Plasmon-Enhanced Photocurrent using Gold Nanoparticles on a Three-Dimensional TiO2 Nanowire-Web Electrode,” Scientific Reports, vol. 7, p. 42524, 2017.
    [19] Y.-H. Chiu, K.-D. Chang, and Y.-J. Hsu, “Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals,” Journal of Materials Chemistry A, vol. 6, no. 10, pp. 4286–4296, 2018.
    [20] N. Zhang, M. Li, C. Fu Tan, C. K. N. Peh, T. Chien Sum, and G. Wei Ho, “Plasmonic enhanced photoelectrochemical and photocatalytic performances of 1D coaxial Ag@Ag2S hybrids,” Journal of Materials Chemistry A, vol. 5, no. 40, pp. 21570–21578, 2017.
    [21] J. K. Sheu et al., “Investigation of the mechanism for Ti/Al ohmic contact on etched n-GaN surfaces,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 18, no. 2, pp. 729–732, 2000.
    [22] J. Sheu, M. Lee, and Y. Lin, “Surface Plasmon-Enhanced GaN Metal–Insulator–Semiconductor Ultraviolet Detectors With Ag Nanoislands Embedded in a Silicon Dioxide Gate Layer,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, pp. 137–141, 2014.
    [23] A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Interfaces, vol. 9, no. 39, pp. 34405–34415, 2017.
    [24] H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping,” Phys. Rev. B, vol. 48, no. 24, pp. 18178–18188, 1993.
    [25] C. Bauer, J.-P. Abid, D. Fermin, and H. H. Girault, “Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles,” J. Chem. Phys., vol. 120, no. 19, pp. 9302–9315, 2004.
    [26] C. Dette et al., “TiO2 Anatase with a Bandgap in the Visible Region,” Nano Lett., vol. 14, no. 11, pp. 6533–6538, 2014.
    [27] B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J Mater Sci, vol. 47, no. 21, pp. 7515–7521, 2012.
    [28] X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys., vol. 76, no. 4, p. 046401, 2013.

    References in Chapter 4
    [1] Edwards P.P, Kuznetsov V.L, and David W.I.F, “Hydrogen energy,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, no. 1853, pp. 1043–1056, 2007.
    [2] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects,” Jpn. J. Appl. Phys., vol. 44, no. 12, pp. 8269–8285, 2005.
    [3] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972.
    [4] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, no. 5, pp. 353–355, 1986.
    [5] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Jpn. J. Appl. Phys., vol. 30, no. Part 2, No. 10A, pp. L1705–L1707, 1991.
    [6] S. S. Kocha, “Electrochemical Investigation of the Gallium Nitride-Aqueous Electrolyte Interface,” J. Electrochem. Soc., vol. 142, no. 12, p. L238, 1995.
    [7] S. Sakthivel, M. Janczarek, and H. Kisch, “Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2,” J. Phys. Chem. B, vol. 108, no. 50, pp. 19384–19387, 2004.
    [8] S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, and C. B. Mullins, “Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires,” Nano Lett., vol. 12, no. 1, pp. 26–32, 2012.
    [9] G. Wang et al., “Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO 2 Nanowire Arrays by Nitrogen Implantation,” Nano Lett., vol. 15, no. 7, pp. 4692–4698, 2015.
    [10] M. Mollavali, C. Falamaki, and S. Rohani, “Preparation of multiple-doped TiO2 nanotube arrays with nitrogen, carbon and nickel with enhanced visible light photoelectrochemical activity via single-step anodization,” International Journal of Hydrogen Energy, vol. 40, no. 36, pp. 12239–12252, 2015.
    [11] S.-Y. Liu et al., “Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light,” Opt. Express, vol. 20, no. S5, p. A678, 2012.
    [12] S.-Y. Liu et al., “InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting,” Opt. Express, vol. 21, no. S6, p. A991, 2013.
    [13] J. K. Sheu, P. H. Liao, T. C. Huang, K. J. Chiang, W. C. Lai, and M. L. Lee, “InGaN-based epitaxial films as photoelectrodes for hydrogen generation through water photoelectrolysis and CO2 reduction to formic acid,” Solar Energy Materials and Solar Cells, vol. 166, pp. 86–90, 2017.
    [14] W. Luo et al., “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett., vol. 92, no. 26, p. 262110, 2008.
    [15] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett., vol. 96, no. 5, p. 052110, 2010.
    [16] J. Zhang et al., “Enhanced visible-light photoelectrochemical behaviour of heterojunction composite with Cu2O nanoparticles-decorated TiO2 nanotube arrays,” New J. Chem., vol. 38, no. 10, pp. 4975–4984, 2014.
    [17] J. Xue, Q. Shen, W. Liang, X. Liu, and F. Yang, “Photosensitization of TiO2 nanotube arrays with CdSe nanoparticles and their photoelectrochemical performance under visible light,” Electrochimica Acta, vol. 97, pp. 10–16, 2013.
    [18] S. Xie, H. Su, W. Wei, M. Li, Y. Tong, and Z. Mao, “Remarkable photoelectrochemical performance of carbon dots sensitized TiO2 under visible light irradiation,” J. Mater. Chem. A, vol. 2, no. 39, pp. 16365–16368, 2014.
    [19] Q. C. Xu, D. V. Wellia, Y. H. Ng, R. Amal, and T. T. Y. Tan, “Synthesis of Porous and Visible-Light Absorbing Bi2WO6/TiO2 Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances,” J. Phys. Chem. C, vol. 115, no. 15, pp. 7419–7428, 2011.
    [20] H. Zhang, G. Wang, D. Chen, X. Lv, and J. Li, “Tuning Photoelectrochemical Performances of Ag−TiO2 Nanocomposites via Reduction/Oxidation of Ag,” Chem. Mater., vol. 20, no. 20, pp. 6543–6549, 2008.
    [21] C. Hu, Y. Lan, J. Qu, X. Hu, and A. Wang, “Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria,” J. Phys. Chem. B, vol. 110, no. 9, pp. 4066–4072, 2006.
    [22] Y.-C. Pu et al., “Au Nanostructure-Decorated TiO 2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting,” Nano Lett., vol. 13, no. 8, pp. 3817–3823, 2013.
    [23] Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, “Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting,” Nano Lett., vol. 13, no. 1, pp. 14–20, 2013.
    [24] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp. 855–857, 2004.
    [25] J.-K. Sheu et al., “InGaN light-emitting diodes with oblique sidewall facets formed by selective growth on SiO2 patterned GaN film,” Opt. Express, vol. 18, no. S4, p. A562, 2010.
    [26] L. W. Wu et al., “In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer,” Solid-State Electronics, vol. 47, no. 11, pp. 2027–2030, 2003.
    [27] J.-K. Sheu, Y. S. Lu, M.-L. Lee, W. C. Lai, C. H. Kuo, and C.-J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett., vol. 90, no. 26, p. 263511, 2007.
    [28] C. M. Tsai et al., “Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Electron Device Lett., vol. 26, no. 7, pp. 464–466, 2005.
    [29] J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Solar Energy, vol. 77, no. 6, pp. 917–930, 2004.
    [30] S. Ito et al., “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films, vol. 516, no. 14, pp. 4613–4619, 2008.
    [31] M. G. Kibria et al., “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano, vol. 7, no. 9, pp. 7886–7893, 2013.
    [32] B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett., vol. 13, no. 9, pp. 4356–4361, 2013.
    [33] L. Caccamo et al., “Band Engineered Epitaxial 3D GaN-InGaN Core–Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces, vol. 6, no. 4, pp. 2235–2240, 2014.
    [34] S.-Y. Liu et al., “Characterization of n-GaN with Naturally Textured Surface for Photoelectrochemical Hydrogen Generation,” J. Electrochem. Soc., vol. 157, no. 12, p. H1106, 2010.
    [35] Jinn-Kong Sheu, Ming-Lun Lee, and Yu-Cheng Lin, “Surface Plasmon-Enhanced GaN Metal–Insulator–Semiconductor Ultraviolet Detectors With Ag Nanoislands Embedded in a Silicon Dioxide Gate Layer,” IEEE J. Select. Topics Quantum Electron., vol. 20, no. 6, pp. 137–141, 2014.

    References in Chapter 5
    [1] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972.
    [2] R. Adhikari et al., “Heterostructured quantum dot architectures for efficient and stable photoelectrochemical hydrogen production,” J. Mater. Chem. A, vol. 6, no. 16, pp. 6822–6829, 2018.
    [3] Z. Zhou, Z. Wu, Q. Xu, and G. Zhao, “A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production,” J. Mater. Chem. A, vol. 5, no. 48, pp. 25450–25459, 2017.
    [4] R. R. Prabhakar, W. Septina, S. Siol, T. Moehl, R. Wick-Joliat, and S. D. Tilley, “Photocorrosion-resistant Sb 2 Se 3 photocathodes with earth abundant MoS x hydrogen evolution catalyst,” J. Mater. Chem. A, vol. 5, no. 44, pp. 23139–23145, 2017.
    [5] J.-K. Sheu, P.-H. Liao, H.-Y. Cheng, and M.-L. Lee, “Photoelectrochemical hydrogen generation from water using undoped GaN with selective-area Si-implanted stripes as a photoelectrode,” J. Mater. Chem. A, vol. 5, no. 43, pp. 22625–22630, 2017.
    [6] G. P. Wheeler and K.-S. Choi, “Photoelectrochemical Properties and Stability of Nanoporous p-Type LaFeO3 Photoelectrodes Prepared by Electrodeposition,” ACS Energy Lett., vol. 2, no. 10, pp. 2378–2382, 2017.
    [7] S. Y. Choi, C.-D. Kim, D. S. Han, and H. Park, “Facilitating hole transfer on electrochemically synthesized p-type CuAlO2 films for efficient solar hydrogen production from water,” J. Mater. Chem. A, vol. 5, no. 21, pp. 10165–10172, 2017.
    [8] M. Jiang et al., “Highly Selective Photoelectrochemical Conversion of Carbon Dioxide to Formic Acid,” ACS Sustainable Chem. Eng., vol. 6, no. 1, pp. 82–87, 2018.
    [9] Z. Zhao, Z. Chen, and G. Lu, “Computational Discovery of Nickel-Based Catalysts for CO2 Reduction to Formic Acid,” J. Phys. Chem. C, vol. 121, no. 38, pp. 20865–20870, 2017.
    [10] H. Pang, T. Masuda, and J. Ye, “Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis,” Chem. Asian J., vol. 13, no. 2, pp. 127–142, 2018.
    [11] G. Yin et al., “Selective electro- or photo-reduction of carbon dioxide to formic acid using a Cu–Zn alloy catalyst,” J. Mater. Chem. A, vol. 5, no. 24, pp. 12113–12119, 2017.
    [12] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting – materials and challenges,” Chem. Soc. Rev., vol. 46, no. 15, pp. 4645–4660, 2017.
    [13] S. Oh et al., “Hole-Selective CoOx/SiO x /Si Heterojunctions for Photoelectrochemical Water Splitting,” ACS Catal., vol. 8, no. 10, pp. 9755–9764, 2018.
    [14] Q. Ding et al., “Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic MoS2,” J. Am. Chem. Soc., vol. 136, no. 24, pp. 8504–8507, 2014.
    [15] Y. H. Lee, J. Kim, and J. Oh, “Wafer-Scale Ultrathin, Single-Crystal Si and GaAs Photocathodes for Photoelectrochemical Hydrogen Production,” ACS Appl. Mater. Interfaces, vol. 10, no. 39, pp. 33230–33237, 2018.
    [16] W. Septina, R. R. Prabhakar, R. Wick, T. Moehl, and S. D. Tilley, “Stabilized Solar Hydrogen Production with CuO/CdS Heterojunction Thin Film Photocathodes,” Chem. Mater., vol. 29, no. 4, pp. 1735–1743, 2017.
    [17] R. K. Biroju et al., “Hydrogen Evolution Reaction Activity of Graphene–MoS2 van der Waals Heterostructures,” ACS Energy Lett., vol. 2, no. 6, pp. 1355–1361, 2017.
    [18] W. Luo et al., “Stable response to visible light of InGaN photoelectrodes,” Appl. Phys. Lett., vol. 92, no. 26, p. 262110, 2008.
    [19] M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A, vol. 6, no. 16, pp. 6922–6930, 2018.
    [20] K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1 − xN and InyGa1 − yN Alloys,” J. Electrochem. Soc., vol. 154, no. 2, pp. B175–B179, 2007.
    [21] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett., vol. 96, no. 5, p. 052110, 2010.
    [22] S.-Y. Liu et al., “InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting,” Opt. Express, vol. 21, no. S6, p. A991, 2013.
    [23] F. M. Orr, Jr., “CO2 capture and storage: are we ready?,” Energy Environ. Sci., vol. 2, no. 5, p. 449, 2009.
    [24] S. Yotsuhashi et al., “Photo-induced CO2 Reduction with GaN Electrode in Aqueous System,” Appl. Phys. Express, vol. 4, no. 11, p. 117101, 2011.
    [25] J. K. Sheu et al., “Investigation of the mechanism for Ti/Al ohmic contact on etched n-GaN surfaces,” J. Vac. Sci. Technol. B, vol. 18, no. 2, p. 5, 2000.
    [26] S.-Y. Liu et al., “Improved Hydrogen Gas Generation Rate of n-GaN Photoelectrode with SiO2 Protection Layer on the Ohmic Contacts from the Electrolyte,” Journal of The Electrochemical Society, vol. 157, p. B266–B268, 2010.
    [27] M. L. Lee et al., “Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Journal of Applied Physics, vol. 94, no. 3, pp. 1753–1757, 2003.
    [28] P. Atkins and J. de Paula, Elements of Physical Chemistry. OUP Oxford, 2013.
    [29] S. Xie, Q. Zhang, G. Liu, and Y. Wang, “Photocatalytic and photoelectrocatalytic reduction of CO 2 using heterogeneous catalysts with controlled nanostructures,” Chem. Commun., vol. 52, no. 1, pp. 35–59, 2016.
    [30] A. Currao, “Photoelectrochemical Water Splitting,” CHIMIA, vol. 61, no. 12, pp. 815–819, 2007.
    [31] A. Siegel and T. Schott, “Optimization of photovoltaic hydrogen production,” International Journal of Hydrogen Energy, vol. 13, no. 11, pp. 659–675, 1988.
    [32] R. Vasudevan et al., “A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications,” Solar Energy Materials and Solar Cells, vol. 150, pp. 82–87, 2016.

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE