簡易檢索 / 詳目顯示

研究生: 陳國泉
Chen, Kuo-Chuan
論文名稱: 碳材負載釕和鉑觸媒的氣體吸附及電催化性質
Properties of Gas Adsorption and Electrocatalysis on Carbon-Supported Ruthenium and Platinum Catalysts
指導教授: 何瑞文
Ho, Sui-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 化學吸附釕觸媒鉑觸媒碳材
外文關鍵詞: Chemisorption, Platinum catalysts, Carbon material, Ruthenium catalysts
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文分為兩個部分。第一部分為研究碳材負載釕觸媒的氣體吸附,主要是探討釕前驅物(RuCl3和Ru(acac)3)、釕含量、擔體(碳黑和碳管)和前處理(氧化及還原溫度)對釕觸媒的氫和一氧化碳化學吸附的影響。我們發現,在鑑定釕粒徑上,一氧化碳吸附與X光繞射的結果較為一致。但是,釕的氫吸附會受上述因素的影響而被抑制或提升;這暗示了釕的催化性質可以使用這些參數調整。第二部分為研究碳材負載釕和鉑觸媒的電催化性質。我們發現,在高分散度的釕觸媒中,只有部份的釕表面具電活性;並且在室溫下釕觸媒對甲醇的電氧化不具活性。另外,鉑和鉑釕觸媒(E-TEK)的電活性表面積隨掃描次數的增加而漸減。而當電壓範圍從0.6V~-0.2V增為1.1V~-0.2V時,鉑觸媒的電活性表面積明顯地降低;這顯示了高氧化電位會降低鉑觸媒的電活性。

    This thesis is composed of two parts. Part one contains the study of gas adsorption on carbon-supported Ru catalysts. It is found that CO chemisorption and XRD agree with each other in charactering Ru catalysts. However, H2 chemisorption on Ru catalysts was affected by a number of factors such as Ru precursor (RuCl3 or Ru(acac)3), Ru loading, support (carbon black or carbon nanotube) and pretreatments (oxidation and reduction temperature), and can be either suppressed or enhanced. This implies that the catalytic behaviour of Ru may be tailored. Part two contains the investigation of the electro-catalytic behaviours of carbon-supported Ru and Pt catalysts. It is found that only part of Ru surface is electro-active for highly-dispersed Ru catalyst, and carbon-supported Ru is not active for the electro-oxidation of methanol at room temperature. For Pt and PtRu catalysts (E-TEK), the electro-active surface area is found to decrease gradually as the number of cyclic scan increases. For Pt catalysts, when potential range is increased from 0.6V~-0.2V to 1.1V~-0.2V, the electro-active surface area of Pt decreases to a much lower extent. This implies the loss of electro-active Pt surface at high oxidation potential.

    目錄 第一部分、碳材負載釕觸媒的氣體吸附------------1-44 1.1摘要--------------------------------------- 1-2 1.2緒論與文獻回顧--------------------------------3 1.2.1 緒論-------------------------------------- 3 1.2.2 文獻回顧---------------------------------- 4 1.2.2.1氫吸附----------------------------------- 4 1.2.2.2 氫吸附和一氧化碳吸附的比較 ------------- 4 1.2.2.3 釕含量對CO/H比值的影響------------------ 5 1.2.3 動機與目的-------------------------------- 6 1.3實驗方法------------------------------------- 7 1.3.1藥品與材料--------------------------------- 7 1.3.2觸媒的製備--------------------------------- 7 1.3.2.1 觸媒的命名------------------------------ 8 1.3.3 化學吸附---------------------------------- 9 1.3.4 X光繞射---------------------------------- 10 1.3.5 X光光電子儀------------------------------ 11 1.4結果---------------------------------------- 12 1.4.1 釕觸媒的化學吸附------------------------- 12 1.4.1.1 釕前驅物的影響------------------------- 12 1.4.1.1.1 還原溫度的影響----------------------- 12 1.4.1.2 擔體的影響----------------------------- 13 1.4.1.2.1 RuCl3製備的釕觸媒-------------------- 13 1.4.1.2.2 Ru(acac)3製備的釕觸媒---------------- 13 1.4.1.2.3還原溫度對RuCl3製備的釕觸媒之影響----- 14 1.4.1.3 釕含量的影響--------------------------- 15 1.4.1.3.1 RuCl3製備的釕觸媒-------------------- 15 1.4.1.3.2 Ru(acac)3製備的釕觸媒---------------- 15 1.4.1.3.3還原溫度對RuCl3製備的釕觸媒之影響----- 15 1.4.1.4 溶劑的影響----------------------------- 16 1.4.1.5 氧化溫度的影響------------------------- 17 1.4.2 X光繞射(XRD)----------------------------- 17 1.4.2.1 釕前驅物的影響------------------------- 17 1.4.2.2 釕含量的影響--------------------------- 19 1.4.2.3 氧化溫度的影響------------------------- 21 1.4.3 X光光電子儀(XPS)------------------------- 22 1.5討論---------------------------------------- 25 1.5.1 氫吸附的抑制----------------------------- 25 1.5.2 氯與氫抑制之相關------------------------- 25 1.5.3 氯的效應之消除--------------------------- 26 1.5.4 氫抑制與釕分散度之相關性----------------- 28 1.6 結論與展望--------------------------------- 30 1.7參考文獻------------------------------------ 31 表目錄 表1 實驗所用藥品與材料-------------------------- 7 表2 觸媒命名所用金屬前驅物、金屬含量、溶劑和擔體 之簡稱------------------------------------------ 8 表3 乾燥後直接還原的各種釕觸媒之氫吸附和一氧化碳 吸附的結果------------------------------------- 34 表4 經氧化製備的各種還原釕觸媒(300℃)之氫吸附和 一氧化碳吸附的結果----------------------------- 34 表5 乾燥後直接還原的各種釕觸媒之釕(101)(2θ=44.0o) 繞射峰的半高寬和釕晶徑------------------------- 35 表6 經氧化製備的各種還原釕觸媒(300℃)之釕(101) (2θ=44.0o) 繞射峰的半高寬和釕晶徑-------------- 35 表7 各種還原釕觸媒的C 1s、Ru 3p3/2和Cl 2p之束縛能 和峰面積與Ru/C峰面積比值和Cl/Ru峰面積比值------ 36 表8 乾燥後直接還原(300℃)的各種釕觸媒之氫吸附、一 氧化碳吸附、X光繞射和X光光電子儀的結果--------- 36 圖目錄 圖1 化學吸附系統的簡圖-------------------------- 9 圖2 等溫氣體吸附圖------------------------------ 9 圖3 碳黑負載釕觸媒(RC10EXC)和碳管負載釕觸媒 (RC10ECALm)的氫吸附和一氧化碳吸附所得之釕分散 隨還原溫度的變化------------------------------- 37 圖4 碳管負載釕觸媒RC10ECALm(4.9wt%釕)和RC20ECALm (9.3wt%釕)的氫吸附和一氧化碳吸附所得之釕分散 度隨還原溫度的變化----------------------------- 37 圖5 以Ru(acac)3和RuCl3所製備之碳黑負載釕觸媒 (a)RA10EXC和(b)RC10EXC在各種還原溫度下的X光繞 射圖譜----------------------------------------- 38 圖6 RA10EXC中釕的(100)、(002)和(100)繞射峰去除背 景值(石墨(101)繞射峰)之X光繞射圖譜。圖中溫度 為還原溫度------------------------------------- 38 圖7 以Ru(acac)3和RuCl3所製備之碳黑負載釕觸媒 (a)RA10EXC和(b)RC10EXC的X光繞射所得之釕晶徑 與氫吸附和一氧化碳吸附所得之釕粒徑隨還原溫度 的變化----------------------------------------- 39 圖8 碳管負載釕觸媒(a)RC10ECALm(4.9wt%釕)和 (b)RC20ECALm(9.3wt%釕)在各種還原溫度下的X光繞 射圖譜----------------------------------------- 39 圖9 碳管負載釕觸媒(a)RC10ECALm(4.9wt%釕)和 (b)RC20ECALm(9.3wt%釕)的X光繞射所得之釕晶徑與 氫吸附和一氧化碳吸附所得之釕粒徑隨還原溫度的變 化--------------------------------------------- 40 圖10 在不同氧化溫度下所製備之還原釕觸媒(300℃) (a)RA7CALm(dm)和(b)RA10CALmM7(dm)的X光繞射圖譜 ----------------------------------------------- 40 圖11 RC10EXC在各種還原溫度下的(a)C1s、(b)Ru3p3/2和 (c)Cl2p之X光光電子能圖譜----------------------- 41 圖12 RC10ECALm在各種還原溫度下的(a)C1s、(b)Ru3p3/2 和(c)Cl2p 之X光光電子能圖譜-------------------- 42 圖13 RC20ECALm在各種還原溫度下的(a)C1s、(b)Ru3p3/2 和(c)Cl2p 之X光光電子能圖譜-------------------- 42 圖14 各種釕觸媒的X光繞射和化學吸附所得之釕粒徑隨釕 分散度的變化----------------------------------- 43 圖15 碳黑負載釕觸媒(RC10EXC)和碳管負載釕觸媒 (RC10ECALm)的(a)H(ad)/CO(ad)比值和(b)Cl/Ru(XPS) 強度比值隨還原溫度之變化----------------------- 43 圖16 碳管負載釕觸媒RC10ECALm(4.9wt%Ru)和RC20ECALm (9.3wt%Ru)的(a)H(ad)/CO(ad)比值和(b)Cl/Ru(XPS) 強度比值隨還原溫度之變化----------------------- 44 圖17 各種釕觸媒的釕分散度與H(ad)/CO(ad)比值之關係 ----------------------------------------------- 44 第二部分、碳材負載釕和鉑觸媒的電催化性質---- 45-72 2.1 摘要------------------------------------ 45-46 2.2 緒論與文獻回顧----------------------------- 47 2.2.1 緒論------------------------------------- 47 2.2.2 文獻回顧--------------------------------- 48 2.2.2.1 釕的電化學----------------------------- 48 2.2.2.2 鉑觸媒的電化學------------------------- 48 2.2.3 動機與目的------------------------------- 49 2.3 實驗方法----------------------------------- 50 2.3.1 工作電極的製作--------------------------- 50 2.3.2 循環伏安法------------------------------- 51 2.3.2.1 釕觸媒的實驗--------------------------- 51 2.3.2.2 鉑和鉑釕觸媒(E-TEK)的實驗-------------- 52 2.3.3 金屬分散度的求法------------------------- 52 2.3.4 甲醇電氧化的峰電流密度之求法------------- 53 2.4 結果與討論--------------------------------- 54 2.4.1 釕分散度對釕觸媒的電氧化還原之影響------- 54 2.4.1.1 直接循環伏安--------------------------- 54 2.4.1.2 固定電位還原--------------------------- 55 2.4.2 釕觸媒催化甲醇電氧化的活性--------------- 57 2.4.3 鉑和鉑釕觸媒(E-TEK)的電氧化還原---------- 57 2.4.3.1 電壓範圍的影響------------------------- 58 2.4.4 鉑和鉑釕觸媒對甲醇電氧化的催化活性------- 59 2.5 結論--------------------------------------- 63 2.6 參考文獻----------------------------------- 64 圖目錄 圖18 工作電極的示意圖(a)正面圖(b)側視圖-------- 50 圖19 釕觸媒電極在硫酸溶液中所測得的循環伏安圖。正電 流為陰極電流----------------------------------- 53 圖20 以鉑觸媒電極在(a)0.50M H2SO4和(b)0.50M CH3OH + 0.50M H2SO4溶液中所測得的循環伏安圖---------- 53 圖21 碳黑負載釕觸媒(a)RA10EXC(19 %D(CO))和 (b)RA10XC(dm) (76 %D(CO))電極在硫酸中的循環伏 安圖。溶液:0.50M H2SO4。掃描速率:20mV/sec。 正電流為陰極電流------------------------------- 66 圖22 以固定電位(-0.15V)經各種時間還原碳黑負載釕觸媒 (a)RA10EXC和(b)RA10XC(dm)電極在硫酸溶液中的循 環伏安圖。溶液:0.50MH2SO4。掃描速率:20mV/sec。 正電流為陰極電流------------------------------- 66 圖23 以固定電位(-0.15V)還原碳黑負載釕觸媒RA10EXC和 RA10XC(dm)電極的氫脫附電量所得之釕分散度隨還 原時間的變化。溶液:0.50MH2SO4。掃描速率: 20mV/sec。紅色表示氫吸附所得之釕分散度。 綠色表示一氧化碳吸附所得之釕分散--------------- 67 圖24 經固定電位(-0.15V)還原約4小時後RA10EXC電極在室 溫下電氧化甲醇的循環伏安圖。掃描速率: 20mV/sec。 正電流為陰極電流。箭頭表示開始掃描方向--------- 67 圖25 P10E-TEK電極在硫酸溶液中各種電壓範圍下的循環伏 安圖(a)0.2V ~ -0.2V (b)0.6V ~ -0.2V (c)1.1V ~ -0.2V。正電流為陰極電流------------------------ 68 圖26 P20E-TEK電極在硫酸溶液中各種電壓範圍下的循環伏 安圖(a)0.2V ~ -0.2V (b)0.6V ~ -0.2V (c)1.1V ~ -0.2V。正電流為陰極電流------------------------ 68 圖27 PR10E-TEK電極在硫酸溶液中各種電壓範圍下的循環伏 安圖(a)0.2V ~ -0.2V (b)0.6V ~ -0.2V (c)1.1V ~ -0.2V。正電流為陰極電流------------------------ 69 圖28 PR20E-TEK電極在硫酸溶液中各種電壓範圍下的循環伏 安圖(a)0.2V ~ -0.2V (b)0.6V ~ -0.2V (c)1.1V ~ -0.2V。正電流為陰極電流------------------------ 69 圖29 (a)P10E-TEK、(b)P20E-TEK、(c)PR10E-TEK和 (d)PR20E-TEK在各種電壓範圍下氫脫附電量所得之金 屬分散度(%D(CV))隨循環掃描次數的變化----------- 70 圖30 (a)Pt electrode、(b)P10E-TEK和(c)P20E-TEK電氧 化甲醇的循環伏安圖。溶液:0.50M CH3OH+0.50M H2SO4。掃描速率:20mV/sec。正電流為陰極電流。 虛線為在硫酸溶液中的最後一次掃描之循環伏安圖 ----------------------------------------------- 71 圖31 (a)PR10E-TEK和(b)PR20E-TEK電氧化甲醇的循環伏 安圖。溶液:0.50M CH3OH+0.50M H2SO4。掃描速 率:20mV/sec。正電流為陰極電流。虛線為在硫酸溶 液中的最後一次掃描之循環伏安圖----------------- 71 圖32 各種鉑和鉑釕觸媒電氧化甲醇之峰電流密度隨循環掃 描次數的變化。電活性表面積分別根據(a)硫酸溶液 和(b)含有甲醇的溶液中的氫脫附電量求得之-------- 72

    1.7參考文獻
    1. Zbigniew Kowalczyk, Sławomir Jodzis, Wioletta Rarg, Jerzy Zieliński, Jerzy Pielaszek, and Adam Presz,“Carbon-supported ruthenium catalyst for the synthesis of ammonia. The effect of the carbon support and barium promoter on the performance”, Appl. Catal. A: General 184, 95-102, (1999).
    2. Ilenia Rossetti, Nicola Pernicone, and Lucio Forni, “Characterisation of Ru/C catalysts for ammonia synthesis by oxygen chemisorption”, Appl. Catal. A: General 248, 97-103, (2003).
    3. I. Rossetti and L. Forni,“Effect of Ru loading and of Ru precursor in Ru/C catalysts for ammonia synthesis”, Appl. Catal. A: General 282, 315-320, (2005).
    4. Shuang-Feng Yin, Qin-Hui Zhange, Bo-Qing Xu, Wen-Xia Zhu, Ching-Fai Ng, and Chak-Tong Au,“Investigation on the catalysis of COx-free hydrogen generation from ammonia”, J. Catal. 224, 384-396, (2004).
    5. L. Li, Z.H. Zhu, Z.F. Yan, G.Q. Lu, and L. Rintoul , “Catalytic ammonia decomposition over Ru/carbon catalysts: The importance of the structure of carbon support”, Appl. Catal. A: General 320, 166-172, (2007).
    6. Mostafa Nawdali, and Daniel Bianchi,“The impact of the Ru precursor on the adsorption of CO on Ru/Al2O3: amount and reactivity of the adsorbed species”, Appl. Catal. A: General 231, 45-54, (2002).
    7. P. Betancourt, A. Rives, R. Hubaut. C.E. Scott, and J. Goldwasser, “ A study of the ruthenium-alumina system”, Appl. Catal. A: General 170, 307-314, (2007).
    8. K. Lu, and B. J. Tatarchuk, “Activated Chemisorption of Hydrogen on Supported Ruthenium” , J. Catal. 106,166-175,(1987).
    9. K. Lu, and B. J. Tatarchuk, “Activated Chemisorption of Hydrogen on Supported Ruthenium” , J. Catal. 106,176-187,(1987).
    10. Xi Wu, Bernard C. Gerstein, Terry S. King, “The effect of chlorine on hydrogen chemisorption by silica-supported Ru catalysts: A proton NMR study” , J. Catal. 135, 68-80, (1992).
    11. J. Okal, M. Zawadzki, L. Kępiński, L. Krajczyk and W. Tylus, “The use of hydrogen chemisorption for the determination of Ru dispersion in Ru/γ-alumina catalysts” , Appl. Catal. A: General 319, 202-209, (2007).
    12. T. Narita, H. Miura, K. Sugiyama, T. Matsuda, and Richard D. Gonzalez,“The effect of reduction temperture on the chemisorptive properties of Ru/SiO2:Effect of chlorine” , J. Catal. 103, 492-495, (1987).
    13. Michael C. J. Bradford, and M. Albert Vannice, “CO2 reforming of CH4 over supported Ru catalysts” , J. Catal. 183, 69-75, (1999).
    14. Akane Miyazaki, Ioan Balint, Ken-ichi Aika, and Yoshio Nakano , “Preparation of Ru Nanoparticles Supported on γ-Al2O3 and Its Novel Catalytic Activity for Ammonia Synthesis” , J. Catal. 204, 364-371, (2001).
    15. Chau-Hwa Yang , and Jemes G. Goodwin, “Reversible chemisorption on highly dispersed Ru catalysts” , J. Catal. 78, 182-187, (1982).
    16. Ian D. Gay, “Highly disperse ruthenium-silica catalysts” , J. Catal. 80, 231-234, (1983).
    17. Ioan Balint, Akane Miyazaki, and Ken-ichi Aika , “Methane reaction with NO over alumina-supported Ru nanoparticles” , J. Catal. 207, 66-75, (2002).
    18. M. Cerro-Alarcn, A. Maroto-Valiente, I. Rodrguez-Ramos, and A. Guerrero-Ruiz, “Further insights into the Ru nanoparticles-carbon interactions and their role in the catalytic properties” , Carbon 43, 2711-2722, (2005).
    19. A. Guerrero-Ruiz, P. Badenes, and I. Rodrguez-Ramos , “Study of some factors affecting the Ru and Pt dispersions over high surface area graphite-supported catalysts” , Appl. Catal. A : General 173, 313-321, (1998).
    20. J. Prabhuram, T.S. Zhao, Z.X. Liang, and R. Chen, “A simple method for synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC” , Electrochimica Acta 52, 2649-2656, (2007).

    2.6 參考文獻
    1. M. Bron, P. Bogdanoff, S. Fiechter, M. Hilgendorff, J. Radnik, I. Dorbandt, H. Schulenburg, and H. Tributsch,“Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12”, J. Electroanal. Chem. 517, 85-94, (2001).
    2. J. Joudkazytė, R. Vilkauskaitė, B. Šebeka, and K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes”, Transactions of the Institate of Metal Finishing 85(4), 194-201, (2007).
    3. Hubert A. Gasteiger, Nenad Marković, Philip N. Ross,and Elton J. Cairns,“Temperature-dependend methanol electro-oxidation on well-characterized Pt-Ru alloys”, J. Electrochem. Soc. 141(7), 1795-1803, (1994).
    4. C. Bock, B. MacDougall, and Y. LePage,“Dependence of CH3OH oxidation activity for a wide range of PtRu alloys” , J. Electrochem. Soc. 151 (8), A1269-A1278, (2004).
    5. T. Frelink, W. Visscher, and J.A.R. van Veen,“Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol”, J. Electroanal. Chem. 382, 65-72, (1995).
    6. S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vukovlć, and B.E. Conway,“The state of electrodeposited hydrogen at ruthenium electrodes”, J. Phys. Chem. 81(24), 2271-2279, (1977).
    7. Ralph N. Adams,“Electrochemistry at Solid Electrodes”, MARCEL DEKKER, INC., New York, P.190, (1969).
    8. Z. Jusys, and R. J. Behm.“Methanol oxidation on a carbon-supported Pt fuel cell catalyst-A kinetic and mechanistic study by differential electrochemical mass spectrometry”, J. Phys. Chem. B 105, 10874-10883, (2001).
    9. J. Prabhuram, and R. Manoharan,“Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid”, Journal of Power Sources 74, 54-61, (1998).

    下載圖示 校內:立即公開
    校外:2008-08-22公開
    QR CODE