| 研究生: |
陳國泉 Chen, Kuo-Chuan |
|---|---|
| 論文名稱: |
碳材負載釕和鉑觸媒的氣體吸附及電催化性質 Properties of Gas Adsorption and Electrocatalysis on Carbon-Supported Ruthenium and Platinum Catalysts |
| 指導教授: |
何瑞文
Ho, Sui-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 化學吸附 、釕觸媒 、鉑觸媒 、碳材 |
| 外文關鍵詞: | Chemisorption, Platinum catalysts, Carbon material, Ruthenium catalysts |
| 相關次數: | 點閱:73 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文分為兩個部分。第一部分為研究碳材負載釕觸媒的氣體吸附,主要是探討釕前驅物(RuCl3和Ru(acac)3)、釕含量、擔體(碳黑和碳管)和前處理(氧化及還原溫度)對釕觸媒的氫和一氧化碳化學吸附的影響。我們發現,在鑑定釕粒徑上,一氧化碳吸附與X光繞射的結果較為一致。但是,釕的氫吸附會受上述因素的影響而被抑制或提升;這暗示了釕的催化性質可以使用這些參數調整。第二部分為研究碳材負載釕和鉑觸媒的電催化性質。我們發現,在高分散度的釕觸媒中,只有部份的釕表面具電活性;並且在室溫下釕觸媒對甲醇的電氧化不具活性。另外,鉑和鉑釕觸媒(E-TEK)的電活性表面積隨掃描次數的增加而漸減。而當電壓範圍從0.6V~-0.2V增為1.1V~-0.2V時,鉑觸媒的電活性表面積明顯地降低;這顯示了高氧化電位會降低鉑觸媒的電活性。
This thesis is composed of two parts. Part one contains the study of gas adsorption on carbon-supported Ru catalysts. It is found that CO chemisorption and XRD agree with each other in charactering Ru catalysts. However, H2 chemisorption on Ru catalysts was affected by a number of factors such as Ru precursor (RuCl3 or Ru(acac)3), Ru loading, support (carbon black or carbon nanotube) and pretreatments (oxidation and reduction temperature), and can be either suppressed or enhanced. This implies that the catalytic behaviour of Ru may be tailored. Part two contains the investigation of the electro-catalytic behaviours of carbon-supported Ru and Pt catalysts. It is found that only part of Ru surface is electro-active for highly-dispersed Ru catalyst, and carbon-supported Ru is not active for the electro-oxidation of methanol at room temperature. For Pt and PtRu catalysts (E-TEK), the electro-active surface area is found to decrease gradually as the number of cyclic scan increases. For Pt catalysts, when potential range is increased from 0.6V~-0.2V to 1.1V~-0.2V, the electro-active surface area of Pt decreases to a much lower extent. This implies the loss of electro-active Pt surface at high oxidation potential.
1.7參考文獻
1. Zbigniew Kowalczyk, Sławomir Jodzis, Wioletta Rarg, Jerzy Zieliński, Jerzy Pielaszek, and Adam Presz,“Carbon-supported ruthenium catalyst for the synthesis of ammonia. The effect of the carbon support and barium promoter on the performance”, Appl. Catal. A: General 184, 95-102, (1999).
2. Ilenia Rossetti, Nicola Pernicone, and Lucio Forni, “Characterisation of Ru/C catalysts for ammonia synthesis by oxygen chemisorption”, Appl. Catal. A: General 248, 97-103, (2003).
3. I. Rossetti and L. Forni,“Effect of Ru loading and of Ru precursor in Ru/C catalysts for ammonia synthesis”, Appl. Catal. A: General 282, 315-320, (2005).
4. Shuang-Feng Yin, Qin-Hui Zhange, Bo-Qing Xu, Wen-Xia Zhu, Ching-Fai Ng, and Chak-Tong Au,“Investigation on the catalysis of COx-free hydrogen generation from ammonia”, J. Catal. 224, 384-396, (2004).
5. L. Li, Z.H. Zhu, Z.F. Yan, G.Q. Lu, and L. Rintoul , “Catalytic ammonia decomposition over Ru/carbon catalysts: The importance of the structure of carbon support”, Appl. Catal. A: General 320, 166-172, (2007).
6. Mostafa Nawdali, and Daniel Bianchi,“The impact of the Ru precursor on the adsorption of CO on Ru/Al2O3: amount and reactivity of the adsorbed species”, Appl. Catal. A: General 231, 45-54, (2002).
7. P. Betancourt, A. Rives, R. Hubaut. C.E. Scott, and J. Goldwasser, “ A study of the ruthenium-alumina system”, Appl. Catal. A: General 170, 307-314, (2007).
8. K. Lu, and B. J. Tatarchuk, “Activated Chemisorption of Hydrogen on Supported Ruthenium” , J. Catal. 106,166-175,(1987).
9. K. Lu, and B. J. Tatarchuk, “Activated Chemisorption of Hydrogen on Supported Ruthenium” , J. Catal. 106,176-187,(1987).
10. Xi Wu, Bernard C. Gerstein, Terry S. King, “The effect of chlorine on hydrogen chemisorption by silica-supported Ru catalysts: A proton NMR study” , J. Catal. 135, 68-80, (1992).
11. J. Okal, M. Zawadzki, L. Kępiński, L. Krajczyk and W. Tylus, “The use of hydrogen chemisorption for the determination of Ru dispersion in Ru/γ-alumina catalysts” , Appl. Catal. A: General 319, 202-209, (2007).
12. T. Narita, H. Miura, K. Sugiyama, T. Matsuda, and Richard D. Gonzalez,“The effect of reduction temperture on the chemisorptive properties of Ru/SiO2:Effect of chlorine” , J. Catal. 103, 492-495, (1987).
13. Michael C. J. Bradford, and M. Albert Vannice, “CO2 reforming of CH4 over supported Ru catalysts” , J. Catal. 183, 69-75, (1999).
14. Akane Miyazaki, Ioan Balint, Ken-ichi Aika, and Yoshio Nakano , “Preparation of Ru Nanoparticles Supported on γ-Al2O3 and Its Novel Catalytic Activity for Ammonia Synthesis” , J. Catal. 204, 364-371, (2001).
15. Chau-Hwa Yang , and Jemes G. Goodwin, “Reversible chemisorption on highly dispersed Ru catalysts” , J. Catal. 78, 182-187, (1982).
16. Ian D. Gay, “Highly disperse ruthenium-silica catalysts” , J. Catal. 80, 231-234, (1983).
17. Ioan Balint, Akane Miyazaki, and Ken-ichi Aika , “Methane reaction with NO over alumina-supported Ru nanoparticles” , J. Catal. 207, 66-75, (2002).
18. M. Cerro-Alarcn, A. Maroto-Valiente, I. Rodrguez-Ramos, and A. Guerrero-Ruiz, “Further insights into the Ru nanoparticles-carbon interactions and their role in the catalytic properties” , Carbon 43, 2711-2722, (2005).
19. A. Guerrero-Ruiz, P. Badenes, and I. Rodrguez-Ramos , “Study of some factors affecting the Ru and Pt dispersions over high surface area graphite-supported catalysts” , Appl. Catal. A : General 173, 313-321, (1998).
20. J. Prabhuram, T.S. Zhao, Z.X. Liang, and R. Chen, “A simple method for synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC” , Electrochimica Acta 52, 2649-2656, (2007).
2.6 參考文獻
1. M. Bron, P. Bogdanoff, S. Fiechter, M. Hilgendorff, J. Radnik, I. Dorbandt, H. Schulenburg, and H. Tributsch,“Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12”, J. Electroanal. Chem. 517, 85-94, (2001).
2. J. Joudkazytė, R. Vilkauskaitė, B. Šebeka, and K. Juodkazis, “Difference between surface electrochemistry of ruthenium and RuO2 electrodes”, Transactions of the Institate of Metal Finishing 85(4), 194-201, (2007).
3. Hubert A. Gasteiger, Nenad Marković, Philip N. Ross,and Elton J. Cairns,“Temperature-dependend methanol electro-oxidation on well-characterized Pt-Ru alloys”, J. Electrochem. Soc. 141(7), 1795-1803, (1994).
4. C. Bock, B. MacDougall, and Y. LePage,“Dependence of CH3OH oxidation activity for a wide range of PtRu alloys” , J. Electrochem. Soc. 151 (8), A1269-A1278, (2004).
5. T. Frelink, W. Visscher, and J.A.R. van Veen,“Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol”, J. Electroanal. Chem. 382, 65-72, (1995).
6. S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vukovlć, and B.E. Conway,“The state of electrodeposited hydrogen at ruthenium electrodes”, J. Phys. Chem. 81(24), 2271-2279, (1977).
7. Ralph N. Adams,“Electrochemistry at Solid Electrodes”, MARCEL DEKKER, INC., New York, P.190, (1969).
8. Z. Jusys, and R. J. Behm.“Methanol oxidation on a carbon-supported Pt fuel cell catalyst-A kinetic and mechanistic study by differential electrochemical mass spectrometry”, J. Phys. Chem. B 105, 10874-10883, (2001).
9. J. Prabhuram, and R. Manoharan,“Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid”, Journal of Power Sources 74, 54-61, (1998).