簡易檢索 / 詳目顯示

研究生: 王辰雲
Wang, Chen-yun
論文名稱: 利用立體視覺與超音波資訊之全方向輪式機器人基於行為模式之人物跟隨與避障
Behavior-based Person following and Obstacle Avoidance of Omni-directional Wheeled Robots Using Stereo Vision and Ultrasonic Information
指導教授: 蔡清元
Tsay, Tsing-Iuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 94
中文關鍵詞: 全方向輪式機器人行為模式
外文關鍵詞: behavior, fuzzy
相關次數: 點閱:59下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 移動式機器人已經被用來幫助我們的日常生活,應用的地方像是醫療照顧、保全以及居家生活。在這些應用中,移動式機器人跟隨特定行人的需求漸漸地受到重視。本篇論文的目的在於為移動式機器人設計一個導航策略,此機器人可以在未知環境中跟隨行人並避開障礙物。所設計導航策略是根據行為模式為基礎的方法,並且在設計上使用到模糊控制演算法。我們將利用一個裝置了多顆超音波感測器並且利用立體視覺系統之全方向輪式機器人,來驗證論文中所提出的方法。實驗結果顯示機器人不僅可以在不碰撞障礙物的情況下到達我們所指定的地點,並且可以緊跟隨著行人。

    Mobile robots have been applied to support our lives in such areas as medical care, security and home life. Demand for a mobile robot to follow a person is increasing. The objective of this thesis is to propose a navigation strategy for a mobile robot to follow a person and avoid obstacles in an unknown environment. The proposed navigation strategy is based on the behavior-based approach and is designed using fuzzy logic control algorithm. An omni-directional wheeled robot integrated with a multiple ultrasonic system and a stereo vision system is employed to verify the theoretical results of the proposed method. Experimental results indicate that the robot can not only reach a predefined destination without any collision with obstacles but also follow a person closely.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論...........................1 1.1 研究動機與目的...............1 1.2 文獻回顧.....................2 1.3 本文架構.....................5 第二章 機器人系統架構介紹.............6 2.1 機器人之架構.................6 2.2 超音波感測系統...............7 2.2.1 超音波測距模組...............8 2.2.2 8051單晶片控制板...........10 2.2.3 超音波感測器陣列配置...........11 2.2.4 超音波發射時序設計.............12 2.3 全方向輪式底盤 ...................13 2.3.1 全方向輪式底盤結構介紹.........14 2.3.2 全方向輪式底盤之運動學......16 2.4 雙眼機械頭.......................19 2.4.1雙眼機械頭之結構.............19 2.4.2 攝影機......................20 2.5 控制系統.........................21 2.5.1 雙C6X DSP PCI卡.............21 2.5.2 信號處理卡與驅動卡..........22 2.5.3 影像處理卡..................22 2.6 控制架構.........................23 第三章 超音波感測值量化與權重值產生..24 3.1 超音波感測器之位置對機器人行動之影響...24 3.2 感測值與目標方向的量化.................25 3.3 規則表的建立...........................27 3.4 超音波權重的計算方式........................32 3.4.1 Kohonen 模糊分類網路(FKCN)................32 3.4.2 超音波權重架構............................34 第四章 影像處理與立體視覺.......................37 4.1 影像處理...............................37 4.2 攝影機校正.............................40 4.3 攝影機矯正與3D距離量測.................43 4.3.1 攝影機矯正 ..............................43 4.3.2 3D距離量測 ..............................47 4.4 雙眼機械頭目標物追蹤...................48 第五章 機器人導航架構的設計.....................50 5.1 導航系統架構................................50 5.2 行為融合設計................................51 5.3 閃避障礙物行為的融合比重計算方式............53 5.3.1 閃避障礙物行為的設計....................55 5.4 沿牆追蹤行為的融合比重計算方式..............59 5.4.1 沿牆追蹤行為的設計......................61 5.5 目標跟隨行為的融合比重計算方式..............64 5.5.1 目標跟隨行為的設計......................66 5.5.2 目標跟隨行為設計改良....................68 第六章 模擬與實驗...............................71 6.1 電腦模擬...............................71 6.2 導航實驗....................................81 6.2.1 機器人導航實驗............................82 6.2.2 機器人跟隨行人實驗........................87 6.2.3 實驗討論..................................89 第七章 結論.....................................90 7.1 結果與討論.............................90 7.2 未來展望...............................91 參考文獻 .......................................92

    [1]. A. Abreu, L. Correia, “A Fuzzy Behavior-based Architecture for Decision Control in Autonomous Vehicles,” Proceedings of IEEE Intelligent Control, the 2001 International Symposium, pp. 370-375.
    [2]. R. C. Arkin, Behavior-based Robotics, MIT Press, 1998.
    [3]. R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Journal of Robotics and Automation, Vol. 2, No. 7, pp. 14-23, 1986.
    [4]. M. Carreras, J. Batlle and P. Ridao, “Hybrid Coordination of Reinforcement Learning-based Behaviors for AUV Control,” Proceedings of IEEE Intelligent Robots and Systems, Vol. 3, pp. 1410-1415, 2001.
    [5]. A. Fusiello, E. Trucco and A. Verri, “A Compact Algorithm for Rectification of Stereo Pairs,” Machine Vision and Applications, pp. 16-22, Mar. 2000.
    [6]. K. Goldberg and B. Chen, “Collaborative Control of Robot Motion: Robustness to Error,” Proceedings of IEEE Intelligent Robots and Systems, Vol. 2, pp. 655-660, 2001.
    [7]. E. Gat, R. Desai, R. Ivlev, J. Loch and D. P. Miller, “Behavior Control for Exploration of Planetary Surfaces,” IEEE Transactions on Robotics and Automation, Vol. 10, No. 4, pp. 490-503, 1994.
    [8]. S. G. Goodrige and R. C. Luo, ”Fuzzy Behavior Fusion for Reactive Control of an Autonomous Mobile Robot: MARGE,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1622-1627, 1994.
    [9]. K. Izumi, K. Watanabe and T. Miyazaki, “Fuzzy Behavior-based Control for a Miniature Mobile Robot,” Proceedings of KES’98. Second International Conference, pp. 483-490, 1998.
    [10]. S. Kweon, Y. Kuno, M. Watanabe and K. Onoguchi, ”Behavior-based Intelligent Robot in Dynamic Indoor Environment,” Proceedings of IEEE/RSJ International Conference on Intelligent robots and systems, pp. 1339-1346, 1992.
    [11]. W. Li, X. Feng, “Behavior Fusion for Robot Navigation in Uncertain Environments Using Fuzzy Logic,” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, pp. 1790-1796, 1994.
    [12]. K. Watanabe, Y Shiraishi, S.G. Tzafestas, J. Tang and T. Fukuda, “Feedback Control of an Omni-directional Autonomous Platform for Mobile Service Robots,” Journal of Intelligent and Robotic Systems, Vol. 22, pp. 315-330, 1998.
    [13]. D. W. Payton, J. K. Rosenblatt and D. M. Keirsey, ”Plan Guided Reaction,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 25, No. 6, pp. 971-987, 1990.
    [14]. Paolo Pirjanian, Multiple Objective Action Selection & Behavior Fusion Using Voting, Ph.D. Dissertation, Institute of Electronic Systems, Aalborg University, Denmark, Aug. 1998.
    [15]. G. Podnar, Physical System of a Mobile Robot: Pluto, Technical Report, The Robotics Institute, Carnegie Mellon University, 1985.
    [16]. G. Podnar, The URANUS Mobile Robot, Technical Report, The Robotics Institute, Carnegie Mellon University, 1985.
    [17]. S. Sekmen, V. K. Homba and S. Zein-Sabatto, “A Fuzzy Integrated Robotic Behavioral Architecture,“ Proceedings of Southeastcon. pp. 52-55, 2000.
    [18]. K. Tadakuma and S. Hirose, ”Development of VmaxCarrier2: Omni-directional Mobile Robot with Function of Step-Climbing,” Proceedings of IEEE International Conference on Robotics & Automation, pp. 3111-3118, April. 2004.
    [19]. E. Tunstel and M. Jamshid, “Fuzzy Logic and Behavior Control Strategy for Autonomous Mobile Robot Mapping,” Proceedings of IEEE International conference on Fuzzy Systems, pp. 514-517, Jun. 1994.
    [20]. C. Ye and D. Wang, ”A Novel Behavior Fusion Method for the Navigation of Mobile Robots,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 5, pp. 3526-3531, 2000.
    [21]. C. Ye, N. H. C. Yung “Vehicle Navigation Strategy Based on Behavior Fusion,” IEEE International Conference on Systems, Man, and Cybernetics Vol. 4, pp. 3698-3703, 1997.
    [22]. N. H. C Yung., C. Ye “Avoidance of Moving Obstacles Through Behavior Fusion and Motion Prediction,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, pp. 3424-3429, 1998.
    [23]. Z. Zhang, “A Flexible New Technique for Camera Calibration,” Technical Report MSR-RR, 98-71, 1998.
    [24]. S. Ziaie-Rad, F. Janabi-Sharifi, M. M. DaneshPanah, A. Abdollahi, H. Ostadi, and H. Samani, “A Practical approach to Control and Self-Localization of Persia Omni-Directional Mobile Robot”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3473-3479, Aug. 2005.
    [25]. 黃信益, 基於行為模式之家用機器人導航設計, 國立交通大學控制所碩士論文, Jun. 2003.
    [26]. 王培睿, 全方向輪式機器人之建構及其以立體視覺為基礎之導航, 國立成功大學機械所碩士論文, Jun. 2006.

    下載圖示 校內:2011-08-27公開
    校外:2014-08-27公開
    QR CODE