簡易檢索 / 詳目顯示

研究生: 張鈞閤
Zhang, Chun-Ho
論文名稱: 下孔式震測法量測現地土壤與岩石材料阻尼之研究
Measurement of In-Situ Damping Ratio of Soil and Rock By Downhole Seismic Testing
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 166
中文關鍵詞: 阻尼比上升時間法頻譜比例法頻譜斜率法下孔式震測法
外文關鍵詞: downhole seismic test, rise time method, spectral ratio method, spectral slope method, damping ratio
相關次數: 點閱:152下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 室內試驗量測岩土動態性質雖已發展得相當完善,然室內試驗在取樣、運送及試體準備等過程有擾動岩土材料之虞,無法完全還原的現地真實狀況,而現地試驗有不擾動材料之優點,為此,本文將於土壤地質的成大工址及岩石地質的新北兩處工址,透過現地鑽孔震測法中較常見之「下孔式震測法」獲得震波數據,並嘗試以四種不同的方法,分別為時間域兩種不同定義的上升時間法;頻率域的頻譜比例法與頻譜斜率法,反求現地地層材料之阻尼特性,最後比較各方法之成果差異。
    比較兩種不同上升時間法計算結果,可發現Gladwin與Stacey(1974)方法所計算的結果較Blair與Spathis(1982)穩定,且獲得之阻尼比較小。頻率域方法中,雖頻譜比例法與頻譜斜率法結果相近,但頻譜斜率法可能因高頻衰減不明顯,再加上窗函數的長短也會影響結果,在分析過程不穩定且耗時,因此頻譜斜率法運用於下孔式震測法相較不合適。綜合比較四種方法結果顯示,以兩種不同的上升時間法獲得之阻尼比與室內試驗結果較為接近,而頻率域的兩種方法計算阻尼比結果均大於時間域的方法。

    The laboratory test may disturb the rock or soil materials in the process of sampling, transportation and sample preparation. In-situ seismic test has the advantage of avoiding the disturbance of geotechnical materials, which can obtain more accurate dynamic parameters of soil or rock. The downhole seismic test has been shown to give reasonable results for in-situ measurements of shear wave velocity, and this paper extends this work to include measurements of damping. Three different methods is used to determine the material damping ratio with depth, which are spectral ratio method, spectral slope method, and two definitions of rise time method.
    The results show that damping ratio obtained by rise time method defined by Gladwin and Stacey (1974) are smaller than those defined by Blair and Spathis (1982). The damping ratio results obtain by time domain method are smaller than spectral ratio method or spectral slope method and more closer to the results of laboratory test. Compare the damping values determined from spectral ratio method with the values determined from spectral slope method, it can be found that the spectral ratio method can obtain more reasonable data points. Therefore, we suggest that spectral ratio method is a better method in frequency domain.

    摘要 I Extended Abstract II 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究內容和流程 2 第二章 文獻回顧 4 2.1 相關文獻回顧 4 2.2 基本波傳理論 7 2.3 土壤動態性質 15 2.4 求取土壤動態性質方式 19 2.5 下孔式震測法 24 2.5.1 下孔式震測法波速計算 25 2.5.2 下孔式震測法須注意之事項 28 2.5.3 下孔式震測法初達波之判斷 30 2.6 頻譜比例法 32 2.7 頻譜斜率法 34 2.8 上升時間法 37 2.8.1 上升時間的定義 39 2.8.2 固定常數C值與震源端上升時間 τ0 40 第三章 現地試驗方法 42 3.1 試驗儀器簡介 42 3.1.1 孔內受波器 42 3.1.2 應力波震源 46 3.1.3 訊號擷取系統 48 3.1.4 觸發器(trigger)50 3.2 儀器配置方式 51 3.3 現地試驗儀器架設 58 3.4 現地試驗步驟 60 第四章 資料分析方法 62 4.1 前言 62 4.2 剪力波速求取 65 4.3 濾波處理 70 4.4 窗函數分析 72 4.5 頻率分析段與頻率衰減段 73 4.6 其他訊號處理 75 4.6.1 初達波偏移零振幅基線之修正 75 4.6.2 時間域補零內插 77 第五章 分析結果與討論 78 5.1 剪力波速(Vs)分析 78 5.2 頻率域方法-頻譜比例法成果 91 5.3 頻率域方法-頻譜斜率法成果 93 5.4 時間域方法-上升時間法成果 101 5.5 各種方法比較 108 5.5.1 頻率域方法比較 108 5.5.2 時間域方法與頻率域方法比較 108 5.6 小結 109 第六章 結論與建議 115 6.1 結論 115 6.2 建議 116 參考文獻 118 附錄A 頻譜比例法結果圖 124 附錄B 頻譜比例法頻率衰減段 131 附錄C 上升時間法結果圖 138 附錄D地質鑽探柱狀圖 165

    1. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第9期,第5-19頁,(1985)。
    2. 李咸亨和吳志明,「下井探測法量測剪力波速之影響因素探討」,中國土木水利工程學刊,第三卷,第一期,第15-27頁,(1991)。
    3. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
    4. 胡成泓,「以頻域及時頻分析輔助孔內震測走時分析自動化」,碩士論文,國立交通大學土木工程研究所,(2012)。
    5. 陳文明,「下孔式震測法於現場土層動態參數量測之研究」,碩士論文,國立成功大學土木工程研究所,(1994)。
    6. 陳逸龍,「多頻道表面波試驗程序標準化之研究」,國立交通大學土木工程研究所,(2003)。
    7. 曾志瑋,「現地跨孔波速檢測軟體之開發」,國立交通大學土木工程研究所,(2009)。
    8. 楊順棋,「以下孔式與跨孔式震測法檢測計算土壤阻尼性質之研究」,碩士論文,中華大學土木工程學系碩士班,(1999)。
    9. 蔡璧嬬,「臺灣自由場強震站場址分類之進一步研究」,碩士論文,國立中央大學應用地質研究所,(2007)。
    10. ASTM D7400/D7400M, “Standard test methods for downhole seismic testing.” ASTM, USA, pp. 1-11, (1982).
    11. Blair, D.P., and Spathis, A.T. “Attenuation of explosion‐generated pulse in rock masses.” Journal of Geophysical Research, Vol. 87, No. B5, pp. 3885-3892, (1982).
    12. Bolt, B.A., Earthquakes and Geological Discovery, Scientific American Library, New York, (1993).
    13. Bourbié, T., Coussy, O., and Zinszner, B., Acoustics of Porous Media, Gulf publishing Company, Houston, Texas, (1987).
    14. Campanella, R.G., and Stewart, W.P., “Downhole seismic cone analysis using digital signal processing.” Proceedings, 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Vol. 1, No. 1.32, pp. 77-83, (1991).
    15. Campanella, R.G., and Stewart, W.P., “Seismic cone analysis using digital signal processing for dynamic site characterization.” Canadian Geotechnical Journal, Vol. 29, No. 3, pp. 477-486, (1992).
    16. Desideri, F.S., “Measurement and estimation of seismic attenuation for nearsurface site characterization.” Department Of Civil, Constructional and Environmental Engineering (DICEA), Ph.D. course in Environmental and Hydraulic Engineering, (2019).
    17. Gladwin, M.T., and Stacey, F.D., “Anelastic degradation of acoustic pulses in rock.” Physics of the Earth and Planetary Interiors, Vol. 8, No. 4, pp. 332-336, (1974).
    18. Gonguet, C., “Mechanism of attenuation of compressional and shear waves for dry, water and benzene satruated rocks.” M.S. Thesis, Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, (1985).
    19. Haase, A.B., and Stewart, R.R., “Q-factor estimation from borehole seismic data: Ross Lake, Saskatchewan.” CREWES Research Report, Vol. 15, pp. 1-7, (2003).
    20. Crow, H., Hunter, J.A., and Motazedian, D., “Monofrequency in situ damping measurements in Ottawa area soft soils.” Soil Dynamics and Earthquake Engineering, Vol. 31, No. 12, pp. 1669–1677, (2011).
    21. Hoar, R.J., “Field measurement of seismic wave velocity and attenuation.” Ph.D. Thesis, The University of Texas at Austin, Austin, Texas, (1982).
    22. Ishihara, K., Soils Behaviour in Earthquake Geotechnics, Clarendon press, Oxford, (1996).
    23. Jamiolkowski, M., LoPresti, D.C.F., and Pallara, O., “Role of in-situ testing in geotechnical earthquake engineering.” Proceedings, Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Vol. 3, pp. 1523–1546, St. Louis, Missouri, (1995).
    24. Karl, L., Haegeman, W., and Degrande, G., “Determination of the material damping ratio and the shear wave velocity with the seismic cone penetration test.” Soil Dynamics and Earthquake Engineering, Vol. 26, No. 12, pp. 1111–1126, (2006).
    25. Khan, Z., Cascante, G., and El Naggar, M.H., “Measurement of dynamic properties of stiff specimens using ultrasonic waves.” Canadian Geotechnical Journal, Vol. 48, No. 1, pp. 1-15, (2011).
    26. Kim, D.S., Bang, E.S., and Kim, W.C., “Evaluation of various downhole data reduction methods for obtaining reliable VS profiles.” Geotechnical Testing Journal, Vol. 27, No. 6, pp. 585-597, (2004).
    27. Kjartansson, E., “Constant Q-wave propagation and attenuation.” Journal of Geophysical Research, Vol. 84, No. B9, pp. 4737-4748, (1979).
    28. Knopoff, L., and Teng, T.L., “Analytical calculation of the seismic travel time problem.” Reviews of Geophysics, Vol. 3, No. 1, pp. 11–24, (1965).
    29. Kudo, K., Shima, E., “Attenuation of shear waves in soil.” Bulletin of the Earthquake Research Institute, Vol. 48, No. 2, pp.145-158, (1970).
    30. Lawan, S.H., Ajiya, M., and Shu’aibu, D.S., “Numerical simulation of chromatic dispersion and fiber attenuation in a single-mode optical fiber system.” Journal of Electronics and Communication Engineering, Vol. 3, No. 6, pp. 34-34, (2012).
    31. McDonal, F.J., Angona, F.A., Mills, R.L., Sengbush, R.L., Van Nostrand, R. G. and White, J. E., “Attenuation of shear and compressional waves in Pierre Shale.” Geophysics, Vol. 23, No. 3, pp. 421-439, (1958).
    32. Miller, G.F., and Pursey, H., “On the partition of energy between elastic waves in a semi-infinite solid.” Proceeding of the Royal Society London, Series A (4th ed.), Vol. 233, pp. 55-69, (1955).
    33. Nejad, M.M., Kalehiwot, N.M., and Momeni, M.S., “Random-effects regression model for shear wave velocity as a function of standard penetration test resistance, vertical effective stress, fines content, and plasticity index.” Soil Dynamics and Earthquake Engineering, Vol. 103, pp. 95-104, (2017).
    34. O’Connell, R.J., and Budiansky, B., “Measures of dissipation in viscoelastic media.” Geophysical Research Letters, Vol. 5, No. 1, pp. 5-8, (1978).
    35. Patel, N.S., “Generation and attenuation of seismic waves in downhole testing.” M.Sc. Thesis, The University of Texas at Austin, Austin, Texas, (1981).
    36. Pevzner, R., Greenwood, A., Urosevic, M., and Gurevich, B., “Estimation of seismic attenuation from zero-offset VSP acquired in hard rock environments.” Australian Society of Exploration Geophysicists Extended Abstracts, Vol. 2013, No. 1, pp. 1-4, (2013).
    37. Redpath, B.B., Edwards, R.B., Hale, R.J., and Kintzer, F.C., “Development of field techniques to measure damping values for near-surface rocks and soils.” URS/John A. Blume and Associates, Engineers, San Francisco, California, (1982).
    38. Richart, F.E., Jr., Hall, J.R., and Woods, R.D., Vibration of Soils and Foundations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, (1970).
    39. Stokoe, K.H., II, Li, S., Cox, B., Menq, F-Y, and Rohay, A., “Deep downhole seismic testing for earthquake engineering studies.” Proceedings, 14th World Conference on Earthquake Engineering, pp. 12-17, Beijing, China, (2008).
    40. SW-AJA, “Soil behavior under earthquake loading conditions, state of the art evaluation of soil characteristics for seismic response analyses: prepared under subcontract.” No. 3354, Union Carbide Corp., for U.S. Atomic Energy Commission, Contract No. W-7405-eng-26, January, (1972).
    41. Toksöz, M.N., and Johnston, D.H., Seismic Wave Attenuation, Society of Exploration Geophysicists reprint series No. 2, (1981).
    42. Wang, Y.H., Yan, W.M., and Lo, K.H., “Damping-ratio measurements by the spectral-ratio method.” Canadian Geotechnical Journal, Vol. 43, No. 11, pp. 1180-1194, (2006).
    43. Woods, R.D., “Screening of surface waves in soils.” Journal of the Soil Mechanics and Fourdations Division, ASCE, Vol. 94, No. 4, pp. 951-979, (1968).
    44. Yıldırım, E., Saatçılar, R., and Ergintavc, S., “Estimation of seismic quality factor: Artificial neural networks and current approaches.” Journal of Applied Geophysics, Vol. 136, pp. 269-278, (2017).

    無法下載圖示 校內:2026-08-01公開
    校外:2026-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE