| 研究生: |
黃怡欣 Huang, I-Hsin |
|---|---|
| 論文名稱: |
超疏水表面的創造及其應用之研究-犧牲粒子的運用 Creation of superhydrophobic surfaces through sacrificial particles and its applications |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 鐵氟龍 、犧牲粒子 、超疏水表面 、塗佈方法 、介電潤濕微流道 、楔形微流道 |
| 外文關鍵詞: | Teflon, sacrificial particle, superhydrophobic surface, coating methods, EWOD microchannel, wedge-shape micochannel |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在運用犧牲粒子的概念,以疏水的鐵氟龍(Teflon)高分子奈米膠體粒子搭配不同體積分率的聚苯乙烯/二乙烯苯共聚物(PSDVB)做為微米犧牲粒子,創造超疏水的Teflon表面並開發其應用。本文利用三種不同的塗佈方法,包括浸鍍、刮刀塗佈及網版印刷,分別將Teflon/PSDVB膠體粒子溶液塗佈於玻璃基板上,經290℃燒結Teflon粒子並犧牲掉PSDVB粒子,藉由產生孔洞結構和表面粗糙度,創造出超疏水的Teflon表面。實驗結果顯示,當PSDVB占體積分率為0.65時,可得到一最佳超疏水表面,水滴前進接觸角可高達175°,接觸角遲滯則可小於5°。與單純的Teflon表面相較,具有更好的超疏水特性。本文亦嘗試由所製備的Teflon表面的表面形貌、表面粗糙度及表面潤濕性,建立其間的關聯。此外,本文也成功地以網版印刷的方式印製兩種實驗室晶片的微流道圖案即:介電潤濕 (Electro-Wetting-on Dielectric, EWOD)超疏水微流道及楔形(wedge-shape)超疏水/超親水微流道,期能提升實驗室晶片的效能及實用性。
This work aims at creating the superhydrophobic Teflon surfaces through sacrificial particle approach and developing the potential applications of these surfaces. Suspension mixtures of colloidal Teflon nanoparticles and poly(styrene-co-divinylbenzene) microparticles with various volume fractions (φ) in the range of 0 to 0.8 were prepared and applied to glass substrate by three coating methods. After sintering of Teflon colloids and degrading of PSDVB at 290 ℃, the resulting surfaces were subjected to characterization by SEM, AFM/α-step, and contact angle analyses. A maximum advancing contact angle as high as 175° and a minimum contact angle hysteresis less than 5° was exhibited by the surface which was prepared with φ=0.65. This surface is obviously much superior to that prepared without using sacrificial particles in superhydrophobicity. The relationship between surface morphology, roughness and wettability was examined and correlated. Furthermore, the fabrication of superhydrophobic EWOD microchannel and superhydrophobic/superhydrophilic wedge-shape microchannel on glass substrate by screen printing method was successfully demonstrated. This may find applications in lab on a chip technology.
參考文獻
1. (a) Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner, D.; Youngblood, J.; McCarthy, T. J., Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir 1999, 15 (10), 3395-3399;
(b) Oner, D.; McCarthy, T. J., Ultrahydrophobic surfaces: effects of topography and length scales on wettability. Langmuir 2000, 16,7777-7782.
2. (a) Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202 (1), 1-8;
(b) Neinhuis, C.; Barthlott, W., Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79 (6), 667-677.
3. (a) Parkin, I. P.; Palgrave, R. G., Self-cleaning coatings. J. Mater. Chem. 2005, 15 (17), 1689-1695;
(b) Feng, X. J.; Jiang, L., Design and creation of superwetting/antiwetting surfaces. Advanced Materials 2006, 18 (23), 3063-3078.
4. Parker, A. R.; Lawrence, C. R., Water capture by a desert beetle. Nature 2001, 414 (6859), 33-34.
5. Shiu, J. Y.; Kuo, C. W.; Chen, P. L.; Mou, C. Y., Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chemistry of Materials 2004, 16 (4), 561-564.
6. Marmur, A., The lotus effect: Superhydrophobicity and metastability. Langmuir 2004, 20 (9), 3517-3519.
7. (a) Ma, M. L.; Hill, R. M., Superhydrophobic surfaces. Current Opinion in Colloid & Interface Science 2006, 11 (4), 193-202;
(b) Roach, P.; Shirtcliffe, N. J.; Newton, M. I., Progess in superhydrophobic surface development. Soft Matter 2008, 4 (2), 224-240.
8. (a) Ni, S. L.; Yin, W.; Ferguson-McPherson, M. K.; Satija, S. K.; Morris, J. R.; Esker, A. R., Nanoscale surface patterns from 10(3) single molecule helices of biodegradable poly(L-lactic acid). Langmuir 2006, 22 (14), 5969-5973;
(b) Liu, Y. Y.; Wang, R. H.; Lu, H. F.; Li, L.; Kong, Y. Y.; Qi, K. H.; Xin, J. H., Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J. Mater. Chem. 2007, 17 (11), 1071-1078;
(c) Michielsen, S.; Lee, H. J., Design of a superhydrophobic surface using woven structures. Langmuir 2007, 23 (11), 6004-6010;
(d) Wang, T.; Hu, X. G.; Dong, S. J., A general route to transform normal hydrophilic cloths into superhydrophobic surfaces. Chemical Communications 2007, (18), 1849-1851.
9. (a) Chen, A. C.; Peng, X. S.; Koczkur, K.; Miller, B., Super-hydrophobic tin oxide nanoflowers. Chemical Communications 2004, (17),1964-1965;
(b) Han, J. T.; Jang, Y.; Lee, D. Y.; Park, J. H.; Song, S. H.; Ban, D. Y.; Cho, K., Fabrication of a bionic superhydrophobicw metal surface by sulfur-induced morphological development. J. Mater. Chem. 2005, 15 (30), 3089-3092;
(c) Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. S., Superhydrophobic perpendicular nanopin film by the bottom-up process. Journal of the American Chemical Society 2005, 127 (39), 13458-13459;
(d) Shi, F.; Song, Y. Y.; Niu, H.; Xia, X. H.; Wang, Z. Q.; Zhang, X., Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction. Chemistry of Materials 2006, 18 (5), 1365-1368.
10. (a) Yerushalmi, R.; Scherz, A.; van der Boom, M. E.; Kraatz, H. B., Stimuli responsive materials: new avenues toward smart organic devices. J. Mater. Chem. 2005, 15 (42), 4480-4487;
(b) Jin, M. H.; Feng, X. J.; Xi, J. M.; Zhai, J.; Cho, K. W.; Feng, L.; Jiang, L., Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromolecular Rapid Communications 2005, 26 (22), 1805-1809.
11. Busscher, H. J.; Stokroos, I.; Golverdingen, J. G.; Schakenraad, J. M., Adesion and spreading of humn fibroblasts on superhydrophobic FEP-Teflon. Cells and Materials 1991, 1 (3), 243-249.
12. (a) Cao, L. L.; Hu, H. H.; Gao, D., Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 2007, 23 (8), 4310-4314;
(b) Choi, C. H.; Kim, C. J., Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 2006, 17 (21), 5326-5333.
13. Xiu, Y. H.; Zhu, L. B.; Hess, D. W.; Wong, C. P., Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and Au sputter deposition. Langmuir 2006, 22 (23), 9676-9681.
14. Tsai, P. S.; Yang, Y. M.; Lee, Y. L., Fabrication of hydrophobic surfaces by coupling of Langmuir-Blodgett deposition and a self-assembled monolayer. Langmuir 2006, 22 (13), 5660-5665.
15. Tsai, P. S.; Yang, Y. M.; Lee, Y. L., Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization. Nanotechnology 2007, 18, 465604 (7pp).
16. Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O., Transformation of a simple plastic into a superhydrophobic surface. Science 2003, 299 (5611), 1377-1380.
17. (a) Milella, A.; Di Mundo, R.; Palumbo, F.; Favia, P.; Fracassi, F.; d'Agostino, R., Plasma Nanostructuring of Polymers: Different Routes to Superhydrophoblicity. Plasma Processes and Polymers 2009, 6 (6-7), 460-466;
(b) Cortese, B.; D'Amone, S.; Manca, M.; Viola, I.; Cingolani, R.; Gigli, G., Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 2008, 24 (6), 2712-2718;
(c) Khorasani, M. T.; Mirzadeh, H.; Kermani, Z., Wettability of porous polydimethylsiloxane surface: morphology study. Applied Surface Science 2005, 242 (3-4), 339-345.
18. van der Wal, P.; Steiner, U., Super-hydrophobic surfaces made from Teflon. Soft Matter 2007, 3 (4), 426-429.
19. Kawai, A.; Nagata, H., wetting behavior of liquid on geometrical rough-surface formed by photolithography. Japanese Journal of Applied Physics Part 2-Letters 1994, 33 (9A), L1283-L1285.
20. Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto, K., Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 2002, 18 (15), 5818-5822.
21. (a) Tadanaga, K.; Morinaga, J.; Matsuda, A.; Minami, T., Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chemistry of Materials 2000, 12 (3), 590-+;
(b) Lim, H. S.; Han, J. T.; Kwak, D.; Jin, M. H.; Cho, K., Photoreversibly switchable superhydrophobic surface with erasable
and rewritable pattern. Journal of the American Chemical Society 2006, 128 (45), 14458-14459;
(c) Nishimoto, S.; Kubo, A.; Nohara, K.; Zhang, X.; Taneichi, N.; Okui, T.; Liu, Z.; Nakata, K.; Sakai, H.; Murakami, T.; Abe, M.; Komine, T.; Fujishima, A., TiO2-based superhydrophobic-superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing. Applied Surface Science 2009, 255 (12), 6221-6225.
22. Zhai, L.; Berg, M. C.; Cebeci, F. C.; Kim, Y.; Milwid, J. M.; Rubner, M.F.; Cohen, R. E., Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert beetle. Nano Letters 2006, 6 (6), 1213-1217.
23. (a) Lopez, G. P.; Biebuyck, H. A.; Frisbie, C. D.; Whitesides, G. M., IMAGING OF FEATURES ON SURFACES BY CONDENSATION FIGURES. Science 1993, 260 (5108), 647-649;
(b) Drelich, J.; Miller, J. D.; Kumar, A.; Whitesides, G. M., Wetting characteristic of liquid-drops at heterogeneous surfaces. Colloids and Surfaces A-Physicochemical and Engineering Aspects 1994, 93, 1-13.
24. Sun, T.; Wang, G. J.; Liu, H.; Feng, L.; Jiang, L.; Zhu, D. B., Control over the wettability of an aligned carbon nanotube film. Journal of the American Chemical Society 2003, 125 (49), 14996-14997.
25. Kim, H. C.; Kreller, C. R.; Tran, K. A.; Sisodiya, V.; Angelos, S.; Wallraff, G.; Swanson, S.; Miller, R. D., Nanoporous thin films with hydrophilicity-contrasted patterns. Chemistry of Materials 2004, 16 (22), 4267-4272.
26. (a) Gau, H.; Herminghaus, S.; Lenz, P.; Lipowsky, R., Liquid morphologies on structured surfaces: From microchannels to microchips. Science 1999, 283 (5398), 46-49;
(b) Lam, P.; Wynne, K. J.; Wnek, G. E., Surface-tension-confined microfluidics. Langmuir 2002, 18 (3), 948-951;
(c) Hsu, C. H.; Chen, C. C.; Folch, A., "Microcanals" for micropipette access to single cells in microfluidic environments. Lab on a Chip 2004, 4 (5), 420-424;
(d) Seemann, R.; Brinkmann, M.; Kramer, E. J.; Lange, F. F.; Lipowsky, R., Wetting morphologies at microstructured surfaces. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (6), 1848-1852.
27. (a) McGovern, M. E.; Kallury, K. M. R.; Thompson, M., Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir 1994, 10 (10), 3607-3614;
(b) Orner, B. P.; Derda, R.; Lewis, R. L.; Thomson, J. A.; Kiessling, L. L., Arrays for the combinatorial exploration of cell adhesion. Journal of the American Chemical Society 2004, 126 (35), 10808-10809.
28. Gu, Z. Z.; Fujishima, A.; Sato, O., Patterning of a colloidal crystal film on a modified hydrophilic and hydrophobic surface. Angewandte Chemie-International Edition 2002, 41 (12), 2068-2070.
29. Zeng, J.; Korsmeyer, T., Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab on a Chip 2004, 4 (4), 265-277.
30. (a) Quinn, A.; Sedev, R.; Ralston, J., Influence of the electrical double layer in electrowetting. Journal of Physical Chemistry B 2003, 107 (5), 1163-1169;
(b) Welters, W. J. J.; Fokkink, L. G. J., Fast electrically switchable capillary effects. Langmuir 1998, 14 (7), 1535-1538;
(c) Decamps, C.; De Coninck, J., Dynamics of spontaneous spreading under electrowetting conditions. Langmuir 2000, 16 (26), 10150-10153.
31. Khoo, H. S., Tseng, F. G., “Spontaneous high-speed transport of subnanoliter water droplet on gradient nanotextured surfaces.” Appl.Phys. Lett. 2009, 95, 063108
32. Wenzel, R. N., “Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng. Chem., 1936, 28, 988-994
33. Cassie, A. B. D., Baxter, S., “Wettability on Porous Surfaces,” Trans. Faraday Soc., 1944, 40, 546-551
34. 結合微奈米科技的新世紀化學工程平台:微流控分析晶片的技術及應
用專專刊,2009年台灣化學工程學會,第五十六卷第四期
校內:2012-07-16公開