| 研究生: |
江松桓 Chiang, Sung-Huan |
|---|---|
| 論文名稱: |
快速熱化學氣相沉積之數值模擬 Numerical Simulation of Rapid Thermal Chemical Vapor Deposition |
| 指導教授: |
王振源
Wang, Chen-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 快速熱化學氣相沉積製程 、晶圓 |
| 外文關鍵詞: | Wafer, Rapid Thermal Chemical Vapor Deposition |
| 相關次數: | 點閱:87 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以數值方法探討以六個加熱燈環快速熱處理機台內的快速熱化學氣相沉積製程,機台的直徑300厘米之晶圓快速加熱設定的製程溫度在進行薄膜沉積, 當加熱燈使用功率調整可將晶圓的最大溫差降至3K.整個分析以不同腔體條件對晶圓表面溫度和沉積厚度均勻性的影響,如製程溫度範圍下、腔體壓力、晶圓轉速以及晶圓表面性質。
發現沉積厚度受到晶圓的溫度均勻性所影響,當製程溫度高於1200K會造成晶圓表面溫度及薄膜厚度的均勻性變差。腔體壓力5torr的對流效應最弱及轉速從0rpm調到240rpm,在晶圓快速旋轉下,改善晶圓表面溫差,所以薄膜厚度也更均勻。晶圓表面覆蓋一層二氧化矽可以有效降低加熱燈功率。
In this thesis the Rapid Thermal Chemical Vapor Deposition of silicon in a RTP furnance with six heating rings is studied numerically. The 300 mm silicon wafer is heated rapidly to the designated process temperature and then maintains at that temperature until the desired deposition thickness is achieved. When adaptive heating powers are employed, the maximum temperature difference of the wafer can be reduced to within 3K. The effects of the following parameters such as: the process temperature, process pressure, rotational speed of the wafer, wafer surface properties, and convection of the reactngn gas flow,
on the deposition thickness are investigated.
It is found that the deposition thickness is strongly influenced by the wafer temperature distribution and
the thickness uniformity is strongly related to the wafer temperature uniformity. Since the decompostion rate of silane increases exponentially when temperature is higher than 1200K which makes the deposition thickness extremely sensitive to the wafer temperature and leads to poor uniformity. In addition, the lower chamber pressure and the rotating wafer results in better temperature uniformity and thus deposition thickness uniformity. The Coating with a thin film of silicon dioxide on the silicon wafer can reduc the power of heating lamp which is needed to deposit more
silicon.
[1]Madou, M. J.,Fundamentals of Microfabrication, second edition, New
York, 2002.
[2]Sze. S. M., VLSI Technology, second edition, McGraw-Hill, 1988.
[3] Apte, P. P., Wood, S., Booth, L., Saraswat, K. C., and Mosoehi, M. M., 1991, “Temperature Uniformity Optimization Using Three-Zone Lamp and Dynamic Control in Rapid Thermal Multiprocessor,” Rapid Thermal and Integrated Processing I, Vol. 224, pp. 209-214.
[4]Gyurcsik, R. S., Riley, T. J., and Sorrell, F. Y., 1991, “A Model for Rapid Thermal Processing : Achieving Uniformity Through Lamp Control,“ IEEE Transactions on Semiconductor Manufacturing, Vol. 4, No. 1, pp. 9-13.
[5] Dilhac, J. M., Nolhier, N., Ganibal, C., and Zanchi, C., 1995, “Thermal Modeling of a Wafer in a Rapid Thermal Processor,“
IEEE Transactions on Semiconductor Manufacturing, Vol. 8, No. 4, Nov., pp. 432-439.
[6]Cole, J. V., Knutson, K. L., and Jensen, K. F., 1995,
“Monte Carlo Simulation of Optical Temperature Sensors in RTP Systems,“
Materials Research Society Symposium Proceedings, 387, pp. 143-148.
[7]嚴文燦, 2003, 快速熱處理製程中支撐架對晶圓溫度分佈的效應,
國立成功大學航空太空工程研究所碩士論文.
[8]Ren, X., Ozturk, M. C., Wortman, J. J., Zhang, B., Maher, D. M., and Batchelor, D., 1992, “Deposition and characterization of polysilicon films deposited by Rapid Thermal Processing,“ J. Vac. Sci. Technol. B, Vol. 10, No. 3, pp. 1081-1086.
[9]Pascual, R., Sayer, M., Lo, A., Herbert, S., Rolim, L. C., and Townley, N.,
“Simulation of the crystallization of thin films by Rapid Thermal Processing,”J. Appl. Phys., Vol.79, pp. 493-499.
[10]Li, V. Z-Q., Mirabedini, M. R., Vogel, E., Henson, K., Batchelor, D., Wortman, J. J., and Kuehn, R. T.,” Effects of Si Source Gases on Polycrystalline Si1-xGex Deposited on Oxide by RTCVD,” Electrochemical and Solid-State Letters, Vol.1, pp. 153-155.
[11]Siegel, R. and Howell, J. R., Thermal Radiation Heat Transfer, 4rd edition, Taylor and Francis, New York, 2002.
[12]Modest, M. F., Radiative Heat Transfer, 2rd edition, Academic, Amsterdam, 2003.
[13] Touloukian, Y. S., Liely, P. E., and Saxena, S. C.,
Thermophysical Properties of Matter, vol. 3: Thermal Conductivity, Nonmetallic Liquids and Gases, IFI/Plenum, New York, 1970.
[14] Touloukian, Y. S., and Makita, J.,
Thermophysical Properties of Matter, vol. 6: Specific Heat, Nonmetallic Gases and Liquids, IFI/Plenum, New York, 1970.
[15] Touloukian, Y. S., Saxena, S. C., and Hestermasn, P.,
Thermophysical Properties of Matter, vol. 11: Viscosity, IFI/Plenum, New York, 1970.
[16]Touloukian, Y. S., and Buyco, E. H., Thermophysical Properties of Matter, Vol. 5: Specific Heat, Nonmetallic Solids, IFI/Plenum , New York, 1970.
[17] Touloukian, Y. S., and Powell, R. W., Thermophysical Properties of Matter, Vol. 2: Thermal Conductivity, Nonmetallic Solids, IFI/Plenum , New York, 1970.
[18]蘇俊傑, 2000, “快速熱處理製程之晶圓加熱模擬分析,“ 第17屆, 中國機械工程學會, 高雄.
[19] 紀崇仁, 2002, 晶圓快速熱處理模擬, 國立成功大學機械工程研究所碩士論文.
[20]Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., 1980.
[21]Patankar, S. V., Liu C. H., and Sparrow E. M., “Fully developed flow and heat transfer in duct having streamwise-variations of cross-section areas,“ ASME Journal of Heat Transfer, Vol. 99, pp. 180-186, 1977.
[22]Burden, R. L. and Faires, J. D.,
Numerical Analysis, seventh edition, Brooks Cole, 2001.
[23] Brid, B. R., Stewart, W. E. and Lightfoot, E. N. Transport Phenomena, second edition, John Wiley, New York, 2002.
[24] Welty, J. R., Charles, E. W., Robert, E. W. and Gregory, R. Foundamentals of Momentum, Heat, and Mass Transfer, fourth edition, John Wiley, New York, 2001.
[25]Incropera, F. P., and DeWitt, D. P, Fundamentals of Heat and Mass Transfer,fifth edition, John Wiley, New
York, 2002.
[26]Vincenti, W. G.and Jr, K. H. E, Introduction to
Physical Gas Dynamics, 1985.
[27]Kakoschke, R., Bubmann, E., and Foll, H., 1990,
“Modelling of Wafer Heating During Rapid Thermal Processing,“
it Applied Physics A, Vol.50, pp. 141-150.
[28]Chiu, W. K. S., Jaluria, Y., and Glumac, N. G., 2000,
“Numberical Simulation of Chemical Vapor Deposition Processes Under Variable
and Constant Property Approzimations,“
Numberical Heat Transfer Part A, Vol.37, pp. 113-132.
[29] Roop, L. M., 1996,
“Transport Phenomena in Chemical Vapor-Deposition System“
Advances in Heat Transfer, Vol.28, pp. 339-425.
[30]C. C. Chuang, 1996, Studies of Heat Transfer and Chemical Reaction in the Modified Chemical Vapor Deposition Process, Ph.D. thesis, Institute of Aeronautics and Asteonautics, National Cheng Kung University, Tainan, Taiwan, June 1996.
[31]連崇恩, 1998, 攜帶氣體組成成份對MCVD製成的影響,
國立成功大學航空太空工程研究所碩士論文.
[32] 林獻堂, 2005, 快熱氧化製程矽沉積厚度均勻性之研究,國立成功大學航空太空工程研究所碩士論文.
[33]黃盟誠, 2003, 圓柱腔體內加一熱板的流場及溫度場,
國立成功大學航空太空工程研究所碩士論文.
[34]Theodoropoulou, A., Adomaitis, R. A., and Zafirou, E., 1998,”
Model Reduction for Optimization of Rapid Thermal Chemical Vapor Deposition Systems,” IEEE Transactions on Semiconductor Manufacturing, Vol.11, pp. 85-98.