簡易檢索 / 詳目顯示

研究生: 魏子傑
Wei, Tzu-Chieh
論文名稱: 多孔碳化矽薄膜及陶瓷多晶碳化矽基板上成長氮化鎵薄膜及其應用在紫外光感測之研究
Growth of GaN Thin Films on Porous SiC/Si and Ceramic Poly-SiC Substrates for UV Detecting Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 84
中文關鍵詞: 碳化矽紫外光感測器氮化鎵
外文關鍵詞: UV Photodetector, SiC, GaN
相關次數: 點閱:91下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文描述在多孔碳化矽薄膜及陶瓷多晶碳化矽基板上利用金屬有機化學氣相沉積系統(MOCVD)成長多晶氮化鎵薄膜的研究。多孔碳化矽係利用快速升溫化學氣相沉積系統(RTCVD)於矽基板上成長單晶碳化矽薄膜,再利用電化學蝕刻法蝕刻出多孔狀結構;而陶瓷多晶碳化矽基板則再利用RTCVD成長一層多晶碳化矽薄膜使表面更平坦及增強結晶度。吾人利用AFM、FE-SEM及XRD等來探討此兩種材料的基本特性。再將此兩種材料製作為碳化矽金半金光感測器進一步比較此兩種材料的優劣。多孔狀碳化矽MSM光感測器的暗電流比多晶陶瓷碳化矽製作的元件小了一個數量級,但多晶陶瓷碳化矽MSM光感測器則較適合操作於高溫的操作環境下,在250°C時光增益僅衰退了30%,優於多孔碳化矽的50%。
    接著在這兩種材料上成長氮化鎵薄膜,基於XRD的量測結果,兩者所成長的氮化鎵皆為多晶結構。吾人並製作出氮化鎵金半金紫外光感測器,並量測其光暗電流,發現在多孔狀碳化矽上成長的元件有較小的暗電流。因此常溫下照射366nm、6.5mW/cm2的紫外光,多孔碳化矽材料上成長的元件有較高的光增益(54304),大於在陶瓷多晶碳化矽上成長的元件(9543)。

    This thesis reports to grow GaN thin films on porous β-SiC (PSC) thin films, and ceramic poly-SiC substrates by MOCVD, respectively. The β-SiC thin films were deposited on Si substrates by RTCVD, and the PSC thin films were fabricated by electrochemical anodization method on the cubic β-SiC thin films. In addition, we grew a poly-SiC thin film on the top of the ceramic SiC substrates to smooth the ceramic surface. With the materials, the SiC photodetectors with metal-semiconductor-metal (MSM) structure were fabricated and compared. We found the leakage current of the PSC device is an order in magnitude lower than that of the ceramic poly-SiC device, however, the latter is more suitable for high temperature operating.
    Furthermore, GaN thin films were grown on the substrates by MOCVD. Based on XRD analyzing, the GaN thin films on both substrates are polycrystalline structure. Finally, MSM photodetectors were grown on PSC/Si and poly-SiC/ceramic SiC, respectively. Under room temperature, and irradiation of 6.5mW/cm2 366nm UV light source, the GaN/PSC/Si photodetector biased -5V has a high optical gain of 54304, which is about 5 times over the 9543 of the GaN/poly-SiC/ceramic SiC counterpart. To our knowledge, the GaN/poly-SiC/ceramic SiC photodetector is firstly reported, and its gain of 9543 is better than some of that reported on sapphire substrate.

    中文摘要 I 英文摘要 II 目錄 III 圖表目錄 V 第一章 前言 1 第二章 成長系統與量測儀器介紹 6 2-1 矽基板的清潔 6 2-2 快速升溫化學氣相沈積系統 ( RTCVD ) 7 2-3 真空蒸著系統 ( Thermal Vacuum Evaporation System ) 8 2-4 退火系統 ( Anneal System ) 9 2-5 量測儀器 9 2-5.1 原子力顯微鏡 (AFM) 9 2-5.2 場發射掃瞄式電子顯微鏡 (FE-SEM) 10 2-5.3 X光繞射儀 (XRD) 10 2-5.4 傅立葉轉換紅外線光譜儀 (FTIR) 11 2-5.5 膜厚量測儀 (α-Step) 12 2-5.6 光致螢光光譜儀 (PL) 12 第三章 薄膜成長分析 13 3-1 β-SiC薄膜的成長 13 3-2 多孔狀β-SiC的製備 14 3-2.1 形成機制 14 3-2.2 設備及方法 16 3-2.3 FTIR分析 17 3-2.4 XRD分析 17 3-2.5 表面SEM分析 17 3-2.6 霍耳量測分析 18 3-3 陶瓷多晶SiC的製備 18 3-3.1 基板介紹 18 3-3.2 陶瓷多晶SiC的成長 19 3-3.3 不同溫度對薄膜品質的影響 20 3-3.4 結果討論 21 3-4 於不同SiC材料上成長GaN薄膜 22 3-4.1 GaN薄膜的成長 22 3-4.2 PL分析 22 3-4.3 XRD分析 23 3-4.4 SEM分析 23 3-4.5 結果討論 24 3-5 結論 25 第四章 感光元件特性分析 26 4-1 金半金光感測器操作原理 26 4-1.1 蕭基接觸 26 4-1.2 金半金光感測器 27 4-2 碳化矽金半金光感測器 28 4-2.1 元件製作 28 4-2.2 不同光源I-V量測 28 4-2.3 不同溫度I-V量測 30 4-2.4 結果討論 32 4-3 氮化鎵金半金紫外光感測器 32 4-3.1 元件製作 32 4-3.2 I-V量測 32 4-3.3 結果討論 33 4-4 結論 34 第五章 結論與未來展望 35 5-1 結論 35 5-2 未來展望 36 ※參考文獻 37 ※附表 41 ※附圖 44 ※誌謝 83 ※自述 84

    [1] E. Monroy, F. Calle, C. Angulo, P. Vila, A. Sanz, J. A. Garrido, E. Calleja, E. Mũoz, S. Haffouz, B. Beaumont, F. Omnes, and P. Gibart, "GaN-Based Solar-Ultraviolet Detection Instrument," Applied Optics, vol. 37, no. 22, pp. 5058-5062, Aug. 1998

    [2] Hadis Morkoc, Aldo Di Carlo, and Roberto Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electronics, vol. 46, pp.157–202, Feb. 2002

    [3] P. G. Neudeck, SiC Technology, NASA Lewis Research Center, Cleveland, USA, 1998

    [4] S. Nishino, H. Suhara, H. Ono, and H. Matsunami, ”Epitaxial growth and electric characteristics of cubic SiC on silicon.” Journal of Applied Physics, vol. 61, pp. 4889-4893, May 1987

    [5] Y. H. Seo, K. C. Kim, H. W. Shim, K.S. Naum, E.-K. Suh, and H.J. Lee, ” Epitaxial Growth of Void Free β-SiC on Si by the Pyrolysis of Tetramethysilane,” Korean Physical Society, vol. 33, pp. S324-S329, 1998

    [6] Y. H. Mo, K. S. Nahm, S. H. Yang, K. C. Kim, W. H. Lee, E.-K Suh, and K. Y. Lim, ”Growth and Characterization of GaN Thin Films on β-SiC/Si Substrate Using Rapid Thermal Chemical Vapor Deposition,” Korean Physical Society, vol. 34, pp. S364-S369, 1999

    [7] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki, “Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer,” Journal of Crystal Growth, vol. 115, pp.634-638, 1991

    [8] A. Sagar, C. D. Lee, R. M. Feenstra, C. K. Inoki, and T. S. Kuan,” Plasma-assisted molecular beam epitaxy of GaN on porous SiC substrates with varying porosity,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, pp. 1812-1817, 2003

    [9] C. K. Inoki, T.S. Kuan, A. Sagar, C.D. Lee, R.M. Feenstra, D. D. Koleske, D. J. Diaz, P.W. Bohn, and I. Adesida, “Growth of GaN on porous SiC and GaN substrates,” Physica Status Solidi (a), vol. 200, No. 1, pp. 44-47, 2003

    [10] M. G. Mynbaeva, K. D. Mynbaev, V. A. Ivantsov, A. A. Lavrent'ev, B. A. Grayson, and J. T. Wolan, “Semi-insulating porous SiC substrates,” Semiconductor Science Technology, vol. 18, No. 6, pp. 602-606, 2003

    [11] G. S. Gupta, P. Vasanth Kumar, V. R. Rudolph, and M. Gupta, ” Heat-Transfer Model for the Acheson Process,” Metallurgical and Materials Transactions A, vol. 32A, pp. 1301-1308, 2001.

    [12] Crawford Taylor, Ebenezer Eshun, M. G. Spencer, K. D. Hobart, and F. J. Kub, ”Growth of beta SiC on a ceramic SiC substrate using a thin silicon intermediate layer,” Materials Science & Engineering B, vol. B61-62, pp. 583-585, 1999

    [13] K. D. Hobart, F. J. Kub, G. G. Jernigan, M. E. Twigg, and P. E. Thompson, ”Fabrication of SOI substrates with ultra-thin Si layers,” Electronics Letters, vol. 34, no. 12, pp. 1265-1267, 1998

    [14] A. J. Steckl and J. P. Li, ”Epitaxial Growth of β-SiC on Si by RTCVD with C3H8 and SiH4,” IEEE Transactions on Electron Devices, vol. 39, pp. 64-74, 1992

    [15] A. J. Steckl, J. Devrajan, C. Tran, and R.A. Stall, “SiC rapid thermal carbonization of the (111)Si semiconductor-on-insulator structure and subsequent metalogranic chemical vapor deposition of GaN”, Applied Physics Letters, vol. 69, pp.2264-2266, 1996

    [16] I. Lauermann, D. Meissner, R. Memming, R. Reineke, and B. Kastening, Dechema-Monographien Band 124 , p.617 (VCH Verlagsgesellschaft, 1991)

    [17] H. Morisaki, H. Ono, and K. Yazawa, “Photoelectrochemical Properties of Single-Crystalline n-SiC in Aqueou Electrolytes,” Journal of the Electrochemical Society , vol. 131, pp. 2081-2086, 1984

    [18] J. S. Shor, X. G. Zhang, and R. M. Osgood, “Laser-Assisted Photoelectrochemical Etching of n-type Beta-SiC,” Journal of the Electrochemical Society, vol. 139, pp. 1213-1216, 1992

    [19] M. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon,” Journal of Crystal Growth, vol. 73, pp. 622-636, 1985

    [20] I. M. Young, M. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Applied Physics Letters, vol. 46, pp.1133-1135, 1985

    [21] K. C. Kim, C. Ⅱ Park, J. Ⅱ Roh, K. S. Nahm, Y. B. Hahn, Y.-S. Lee, and K. Y. Lim, “Mechanistic Study and Characterization of 3C-SiC(100) Grown on Si(100),” Journal of the Electrochemical Society, vol. 148(5), pp. C383-C389, 2001

    [22] L. S. Hong and Z. L. Liu, “Gas-to-Particle Conversion Mechanism in Chemical Vapor Deposition of Silicon Carbide by SiH4 and C2H2,“ Industrial & Engineering Chemistry Research, vol. 37 (9), pp. 3602 -3609, 1998

    [23] B. Shen, K. Yang, L. Zang, Z. Chen, Y. Zhou, P. Chen, R. Zhang, Z. Huang, H. Zhou, and Y. Zheng, “Study of Photocurrnet Properties of GaN Ultraviolet Photoconductor Grown on 6H-SiC Substrate,” Japanese Journal of Applied Physics, vol. 38, pp. 767-769, 1999

    [24] T. Boufadena, N. Chaabena, M. Christophersenb, and B. El Jani, “GaN growth on porous silicon by MOVPE,” Microelectronics Journal, vol. 34, pp. 843-848, 2003

    [25] C. K. Inoki, T. S. Kuan, C. D. Lee, Ashutosh Sagar, and R. M. Feenstra, ”Growth of GaN on Porous SiC Substrates by Plasma-Assisted Molecular Beam Epitaxy,” Mater. Res. Soc. Symp. Proc, vol. 722, pp. K1.3.1-K.1.3.6, 2002

    [26] F. Yun, M. A. Reshchikov, L. He, H. Morkoc, C. K. Inoki, and T. S. Kuan, “Growth of GaN films on porous SiC substrate by molecular-beam epitaxy,” Applied Physics Letters, vol. 81, pp. 4142-4144, 2002

    [27] C. K. Inoki, T. S. Kuan, C. D. Lee, Ashutosh Sagar, R. M. Feenstra, D. D. Koleske, D. J. Diaz, P. W. Bohn, and I. Adesida, “Growth of GaN on Porous SiC and GaN Substrates,” Journal of Electronic Materials, vol. 32, no. 8, pp. 855-960, 2003

    [28] C. K. Inoki, T.S. Kuan, A. Sagar, C.D. Lee, R.M. Feenstra, D. D. Koleske, D. J. Diaz, P.W. Bohn, and I. Adesida, “Growth of GaN on porous SiC and GaN substrates,” Physica Status Solidi(a), vol. 200, no. 1, pp. 44-47, 2003

    [29] V. L. Rideout, “A Review of the Theory, Technology and Applications of Metal-Semiconductor Rectifiers,” Thin Solid Films, vol. 48, pp.261, 1978

    [30] S. M. Sze, Semiconductor Devices Physics and Technology, 2nd Ed., Wiley, 2001.

    [31] J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelengthoptical communications,” IEEE Journal of Quantum Electronics, vol. 27, pp.737-752, 1991

    [32] Y. K. Su, Y. Z. Chiou, C. S. Chang, S. J. Chang, Y. C. Lin, and J. F. Chen, “4H-SiC mteal-semiconductor-metal ultraviolet photodetectors with Ni/ITO electrodes,” Solid-State Electronics, vol. 46, pp.2237-2240, 2002

    [33] D. S. Wuu, S. C. Hsu, and R. H. Horng, “Improvements of transparent electrode materials for GaN metal-semiconductor-metal photodetectors,” Journal of Material Science: Materials in Electronics, vol. 15, pp.793-796, 2004

    [34] [Online]. Available: http://www.uvp.com/

    [35] P. A. Ivanov, M. G. Mynbaeva, and S. E. Saddow, “Effective carrier density in porous silicon carbide,” Semiconductor Science and Technology, vol. 19, pp.319-322, 2004

    [36] A. O. Konstantinov, A. Henry, C. I. Harris, and E. Janzen “Photoluminscence studies of porous silicon carbide,” Applied Physics Letters, vol. 17, no. 24, pp.2250-2252, 1995

    [37] Donald A. Neamen, Semiconductor Physics and Devices Basic Principles, 3rd Ed., McGraw-Hill, 2003.

    [38] J. B. Casady and R. W. Johnson, “Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review,” Solid-State Electronics, vol. 39, no. 10, pp. 1409-1422, 1996

    [39] W. T. Hsieh, Y. K. Fang, K. H. Wu, W. J. Lee, J. J. Ho, and C. W. Ho, “Using Porous Silicon as Semi-Insulating Substrate for β-SiC High Temperature Optical-Sensing Devices,” IEEE Transactions on Electronic Devices, vol. 40, no. 2, pp. 801-803, 2001

    下載圖示 校內:2013-07-03公開
    校外:2013-07-03公開
    QR CODE