簡易檢索 / 詳目顯示

研究生: 黃冠仁
Huang, Guan-Ren
論文名稱: CO2雷射加工高分子及玻璃材料的缺陷改善探討
Investigation of defect improvement of CO2 laser micromachining on polymer and glass
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 104
中文關鍵詞: 覆蓋層雷射切割水輔助凸塊改善
外文關鍵詞: laser micromachining, water assisted, bulge improvement, cover layer
相關次數: 點閱:94下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要研究CO2雷射對高分子材料PMMA和Pyrex玻璃加工時常出現的缺陷並嘗試找出改善的方法。當加工PMMA時,凸塊會在切削邊緣產生。若加上一覆蓋層再進行加工,可以得到較平整的表面且沒有凸塊,在計算上配合熱能與材料汽化熱的觀點所得到的理論值與實驗值對照並發現兩者非常接近,且適用於加覆蓋層的深度預測,在不同的覆蓋層所加工的結果比較可幫助對凸塊形成和被移除的機制有更進一步的瞭解。另外當使用CO2雷射在空氣中直接對Pyrex玻璃加工時容易出現的裂痕、燒焦與凸塊的現象,這些可經由將試片浸於水中再進行切削的水輔助實驗而得到改善。在實驗中分別針對功率、切削速度、水深、光斑尺寸、聚焦位置和覆蓋層的有無來做比較與討論,試找出分別適用於切割和加工微流道的製程參數,希望能達到試片表面平整且無凸塊的目標,以利於晶片接合並提高其氣密度。

      The formation and improvement of defects during CO2 laser micromachining polymer, e.g. PMMA and Pyrex glass were studied in this thesis. As PMMA was being laser micromachined, the bulges were formed at the rims of the channel formed by laser beam. By coating a cover layer on PMMA when PMMA was machined, we could get a smooth surface without bulges after removing the layer. A theoretical value of channel depth calculated by ideas of thermal energy and specific energy is very close to the experimental, and the trends are also the same by using cover layer. With different cover layers and comparing the results, we could get more information to understand the phenomena of formation and elimination of bulges. As we used CO2 laser to micromachine Pyrex glass in ambient air, defects like cracks, scorches and bulges could be occurred. We could improve these defects by water-assisted method of immersing glass in water during laser machining. In order to find the optimal experimental parameters for cutting or fabricating microchannels on glass, e.g. laser power, cutting speed, water depth, spot size and cover layer were studied to understand the effect of defect improvement. The two aspects of studies were to achieve the aim of smooth surface without bulges and cracks beneficial for the bonding of microfludic chips and related application.

    摘要................................................I Abstract...........................................II 誌謝..............................................III 目錄...............................................IV 表目錄............................................VII 圖目錄...........................................VIII 符號表............................................XIV 第一章 緒論........................................1 1.1研究動機........................................1 1.2 研究目的.......................................4 1.3 本文架構.......................................5 第二章 文獻回顧....................................7 2.1 高分子材料的加工技術...........................7 2.1.1 傳統高分子材料加工技術.....................7 2.1.2 雷射高分子材料加工技術.....................8 2.2 玻璃的加工技術................................11 2.2.1 傳統玻璃加工技術..........................11 2.2.2 雷射玻璃加工技術..........................13 第三章 實驗方法與步驟.............................17 3.1 雷射加工系統介紹..............................17 3.2 觀察與量測設備介紹............................19 3.2.1 光學顯微鏡................................19 3.2.2 表面粗度儀................................19 3.2.3 共軛焦3D光學表面形貌量測儀................20 第四章 高分子雷射加工凸塊改善與結構控制...........22 4.1 試片材料與雷射加工機制介紹....................22 4.2 雷射加工實驗流程..............................26 4.2.1 無覆蓋層PMMA雷射加工......................26 4.2.2 加覆蓋層PMMA雷射加工......................28 4.3 比較不同雷射加工方式..........................32 4.3.1 無覆蓋層PMMA之雷射加工....................32 4.3.2 加覆蓋層PMMA之雷射加工....................36 4.4 以數學式預測加工深度..........................46 第五章 玻璃雷射加工缺陷改善.......................56 5.1 雷射與試片材料................................58 5.2 雷射加工實驗流程..............................59 5.3 空氣中的雷射加工實驗..........................61 5.3.1 空氣中雷射加工的缺陷......................62 5.3.2 空氣中雷射加工參數的影響..................65 5.4 水輔助雷射加工實驗............................67 5.4.1 水輔助雷射加工對缺陷的改善................68 5.4.2 不同水深的影響............................70 5.4.3 水輔助雷射加工參數的影響..................74 5.5 在水中不同加工方式實驗........................78 5.5.1 不同光斑大小的影響........................78 5.5.2 變化聚焦面高度的差異......................85 5.5.3 貼上膠帶加工比較撕除前後的差異............88 第六章 結論與未來方向.............................92 6.1 結論..........................................92 6.2 未來方向......................................94 參考文獻...........................................97 簡歷..............................................104

    [1] M.E.Sandison and H.Morgan, “Rapid fabrication of polymer microfluidic systems for the production of artificial lipid bilayers.” Journal of Micromechanics and Microengineering, 15(2005), 139-144.
    [2] T.Fujii, “PDMS-based microfluidic devices for biomedical applications.” Microelectronic Engineering, 61-62(2002), 907-914.
    [3] D.Snakenborg, H.Klank and J.P.Kutter, “Microstructure fabrication with a CO2 laser system.” Journal of Micromechanics and Microengineering, 14(2004), 182-189.
    [4] J.Zhao, J.Sullivan and T.D.Bennett, “Wet etching study of silica glass after CW CO2 laser treatment.” Applied Surface Science, 225(2004), 250-255.
    [5] J.S.Ko, H.C.Yoon, H.Yang, H.B.Pyo, K.H.Chung, S.J.Kim and Y.T.Kim, “A polymer-based microfluidic device for immunosensing Biochips.” Lab on a Chip, 3(2003), 106-113.
    [6] J.Narasimhan and I.Papautsky, “Polymer embossing tools for rapid prototyping of plastic microfluidic devices.” Journal of Micromechanics and Microengineering, 14(2004), 96-103.
    [7] J.Li and D.Chen, “Low-temperature thermal bonding of PMMA microfluidic chips.” Analytical Letters, 38(2005), 1127-1136.
    [8] K.F.Lei, W.J.Li and Y.Yam, “Effects of contact-stress on hot-embossed PMMA microchannel wall profile.” Microsystems Technologies, 11(2005), 353-357.
    [9] M.Heckele and W.K.Schomburg, “Toptical review: Review on micro molding of thermoplastic polymers” Journal of micromechanics and microengineering, 14(2004), R1-R14.
    [10] E.Jung, R.Assmann, R.Aschenbrenner and H.Reichi “Packaging of an Electronic-Microfluidic Hybrid Sensor.” Electronic components and technology conference, 2003, 373-376.
    [11] S.M.Ford, B.Kar, S.Mcwhorter, J.Davies, S.A.Soper, M.Klopf, G.Calderon and V.Saile, “Microcapillary electrophoresis devices fabricated using polymeric substrates and x-ray lithography.” Journal of Microcolumn Separations, 10(1998), 413-422.
    [12] A.Rasmussen, M.Gaitan, L.E.Locascio and M.E.Zaghloul, “Fabrication techniques to realize CMOS-compatible microfluidic microchannels.” Jounal of Microelectromechanical Systems, 10(2001), 286-297.
    [13] M.Anjanappa, R.Angara and L.Si, “Micro/MEMS actuators for microfluidic applications.” International Conference on Smart Materials Structures and Systems, 2005, SE64-SE71.
    [14] U.Wallrabe, H.Dittrich, G.Friedsam, T.Hanemann, J.Mohr, K.Muller, V.Piotter, P.Ruther, T.Schaller and W.Zibler, “Micromolded easy-assembly multi fiber connector: RibCon.” Microsystem Technologies, 8(2002), 83-87.
    [15] P.G.Berrie and F.N.Birkett, “The drilling and cutting of polymethyl methacrylate (Perspex) by CO2 laser.” Optics and Lasers in Engineering, 1(1980), 107-129.
    [16] R.Srinivasan, “Ablation of polymethyl methacrylate films by pulsed (ns) ultraviolet and infrared (9.17 μm) lasers: a comparative study by ultrafast imaging.” Journal of Applied Physics, 73(1993), 2743-2750.
    [17] A.Hartwig, J.Hunnekuhl, G.Vitr, S.Dieckhoff, F.Vohwinkel and O.D.Hennemann, “Influence of CO2 laser radiation on the surface properties of poly(ether ether ketone).” Journal of Applied Polymer Science, 64(1997), 1091-1096.
    [18] H.Klank, J.P.Kutter and O.Geschke, “CO2 laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems.” Lab on a Chip, 2(2002), 242-246.
    [19] E.A.Waddell, L.E.Locascio and G.W.Kramer, “UV laser micro- machining of polymers for microfluidic applications.” Journal of the Association for Laboratory Automation, 7(2002), 78-82.
    [20] F.Weisbuch, V.N.Tokarev, S.Lazare and D.Debarre, “Viscosity of transient melt layer on polymer surface under conditions of KrF laser ablation.” Applied Surface Science, 186(2002), 95-99.
    [21] B.H.Zhou and S.M.Mahdavian, “Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser.” Journal of Materials Processing Technology, 146(2004), 188-192.
    [22] J.Y.Cheng, C.W.Wei, K.H.Hsu and T.H.Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development.” Sensors and Actuators B, 99(2004), 186-196.
    [23] B.C.Sim and W.S.Kim, “Melting and dynamic-surface deformation in laser surface heating.” International Journal of Heat and Mass Transfer, 48(2005), 1137-1144.
    [24] A.Grosse, M.Grewe and H.Fouckhardt, “Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices.” Journal of Micromechanics and Microengineering, 11(2001), 257-262.
    [25] 盧志昌, 蔡顯榮, “硼矽酸鹽玻璃封焊材料之CO2雷射加工研究。” 碩士論文, 2004。
    [26] L.M.Fu, G.B.Lee, Y.H.Lin and R.J.Yang, “Manipulation of microparticles using new modes of traveling-wave-dielectrophoretic forces: numerical simulation and experiments.” Transactions on Mechatronics, 9(2004), 377-383.
    [27] D.J.Harrison, A.Manz, Z.H.Fan, H.Ludi and H.M.Widmer, “Capillary electrophoresis and sample injection systems integrated on a planar glass chip.” Analytical Chemistry, 64(1992), 1926-1932.
    [28] Z.H.Fan and D.J.Harrison, “ Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections.” Analytical Chemistry, 66(1994), 177-184.
    [29] A.Jain, T.Borca-Tasciuc, A.P.Roday, M.K.Jensen and S.G.Kandlikar, “Development of an instrumented glass microchannel device for critical heat flux visualization and studies.” Proc. 21st IEEE SEMI-Therm Symposium, San Jose CA(2005), 26-30.
    [30] M.Stjernstrom and J.Roeraade, “Method for fabrication of microfluidic
    systems in glass.” Journal of Micromechanics and Microengineering, 8(1998), 33-38.
    [31] C.H.Lin, G.B.Lee, Y.H.Lin and G.L.Chang, “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass.” Journal of Micromechanics and Microengineering, 11(2001), 726-732.
    [32] R.M.Lumley, “Controlled separation of brittle materials using a laser.” American Ceramic Society Bulletin, 48(1969), 850-854.
    [33] G.K.Chui, “Laser cutting of hot glass.” American Ceramic Society Bulletin, 54(1975), 514-518.
    [34] C.H.Tsai and C.S.Liou, “Applying an on-line crack detection technique for laser cutting by controlled fracture.” International Journal of Advanced Manufacturing Technology, 18(2001), 724-730.
    [35] 林柏昌, 蔡傳暉, “LCD玻璃基板之雷射預彎破裂切割技術。” 第二十屆機械工程研討會論文集, D06-18(2003), 967-975.
    [36] G.Allcock, P.E.Dyer, G.Elliner and H.V.Snelling, “Experimental observations and analysis of CO2 laser-induced microcracking of glass.” Journal of Applied Physics, 78(1995), 7295-7303.
    [37] M.A.Finucane and I.Black, “CO2 laser cutting of stained glass.” International Journal of Advanced Manufacturing Technology, 12(1996), 47-59.
    [38] B.L.Sowers, R.D.Birkhoff and E.T.Arakawa, “Optical absorption of liquid water in the vacuum ultraviolet.” Journal of Chemical Physics, 57(1972), 583-584.
    [39] G.M.Hale and M.R.Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region.” Applied Optics, 12(1973), 555-563.
    [40] A.Kruusing, “Review Underwater and water-assisted laser processing: Part 1-general features, steam cleaning and shock processing.” Optics and Lasers in Engineering, 41(2004), 307-327.
    [41] L.Berthe, R.Fabbro, P.Peyre, L.Tollier and E.Bartnicki, “Shock waves from a water-confined laser-generated plasma.” Journal of Applied Physics, 82(1997), 2826-2832.
    [42] A.Kruusing, S.Leppavuori, A.Uusimaki, B.Petretis and O.Makarova, “Micromachining of magnetic materials.” Sensors and Actuators, 74(1999), 45-51.
    [43] S.Zhu, Y.F.Lu, M.H.Hong and X.Y.Chen, “Laser ablation of solid substrate in water and ambient air.” Journal of Applied Physics, 89(2001), 2400-2403.
    [44] A.Kruusing, “Review Underwater and water-assisted laser processing: Part 2-Etching, cutting and rarely used methods.” Optics and Lasers in Engineering, 41(2004), 329-352.
    [45] 仲成儀器股份有限公司,雷射應用光學實驗裝置,第53~67頁,台北,全華科技圖書有限公司,民國84年。
    [46] http://www.hsinhwa.com/ume8.htm
    [47] H.Sato and S.Nishio, “Review Polymer laser photochemistry, ablation, reconstruction, and polymerization.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2(2001), 139-152.
    [48] V.N.Tokarev, W.Marine, C.Prat and M.Sentis, “Clean processing of polymers and smoothing of ceramics by pulsed laser melting.” Journal of Applied Physics, 79(1995), 4714-4723.
    [49] V.N.Tokarev and A.F.H.Kaplan, “Suppression of melt flows in laser ablation: application to clean laser processing.” Journal of Physics D, 32(1999), 1526-1538.
    [50] C.Chuai, K.Almdal and J.L.Jorgensen, “Thermal behavior and properties of polystyrene/poly(methyl methacrylate) blends.” Journal of Applied Polymer Science, 91(2004), 609-620.
    [51] http://www.erso.itri.org.tw/center/DTCLab_test.asp
    [52] JSR THB negative type photoresist - THB-130N
    [53] Z.L.Li, T.T.Lin and P.M.Moran, “Thick polymer cover layers for laser micromachining of fine holes.” Applied Physics A, 81(2005), 753-758.
    [54] http://www.valleydesign.com/pyrex.htm
    [55] Q.Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range.” Journal of The American Ceramic Society, 29(1946), 240-253.
    [56] 才有益, 張炎輝, “以嵌入法製作含BBO晶體透明光學玻璃之研究。”成功大學材料科學及工程研究所博士論文, 2003, 18-20.
    [57] J.Ohara, M.Nagakubo, N.Kawahara and T.Hattori, “High aspect ratio etching by infrared laser induced micro bubbles.” Micro Electro Mechanical Systems, 1997. MEMS '97, Proceedings, IEEE., Tenth Annual International Workshop on Micro Electro Mechanical Systems, 175-179.

    下載圖示 校內:2008-02-07公開
    校外:2008-02-07公開
    QR CODE