簡易檢索 / 詳目顯示

研究生: 陳尉平
Chen, Wei-Ping
論文名稱: 應用河川流量歷線推估台灣地下水補注量
Estimating Groundwater Recharge of Taiwan from Streamflow Hydrographs
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 171
中文關鍵詞: 穩定基流分析水平衡模式地下水補注基流
外文關鍵詞: Stable-Base-Flow Analysis, Baseflow, Groundwater Recharge, Water Balance
相關次數: 點閱:136下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用河川流量歷線分析模式,來進行地下水補注量之推估,其中分別為:案例一,採用四種模式,分別為消退曲線位移法、持續補注法、基流資料估計法、以及數位濾波法,並藉由收集河川日流量資料,應用於濁水溪流域地下水補注量之推估;案例二,為嘗試估計台灣地區之地下水補注量值,利用將研究區域以網格劃分的方式,配合經由基流資料估計法與穩定基流分析後所得之穩定基流指數,以及收集降雨量與蒸發散量資料,再將各所需參數代入本研究所建立之水平衡模式,即可求得各項水文參數於空間上之分佈,利用此模式則可達到快速估計大範圍區域地下水補注量之目的。

    本研究在濁水溪流域地下水補注量推估案例研究中,採用四種模式進行分析,其中消退曲線位移法適合應用於較明顯的補注事件之地下水補注量推估,然其在河川流量尖峰時間點瞬間給予的作法,有時會在河川流量尖峰時間點產生基流量大於河川流量的不合理現象;而持續補注法則是為改進消退曲線位移法,引進持續補注參數,用以避免基流量大於河川流量的不合理現象,並且當連續但卻較不明顯的補注事件發生時,提供可分析持續補注行為之過程;基流資料估計法因採用線性連接的方式來連結補注事件的起點和終點,而數位濾波法則是為滿足消退理論,因此此二模式較無法分析獲得補注事件期間地下水補注量的增額,所得之基流指數也因而較低,然此二模式可提供快速且便利的分析過程,因此適合運用於大範圍研究區域的地下水補注量推估。

    本研究在台灣地下水補注量推估案例的研究成果獲得:長年平均穩定基流指數分佈趨勢為,台灣中央山脈區約40%~60%,山麓區介於20%~40%之間,沿海平原區則為10%~20%,最低值10%以下則發生於嘉南平原上,整體平均穩定基流指數約為34.5%;長年平均逕流量分佈趨勢為,台灣西半部平原地區介於0~1000 mm之間,台灣東北角之長年平均總逕流量則是大約為3000 mm,台灣整體長期平均逕流率為55.5%;長年平均穩定地下水補注量之空間分佈趨勢為,最高值(大於1000 mm)的區域發生在台灣東北角以及中央山脈偏東岸地區,高山區約有800~2000 mm/yr,山麓區則為200~600 mm/yr,平原低地區則為低於200 mm/yr,特別值得注意的是台灣西部沿海區域,其長年平均穩定地下水補注量甚少或為零,而這個區域也是台灣地層下陷最為嚴重的區域。由本研究建立的水平衡模式推估求得台灣的地下水補注量大約為180億噸/年,與年平均降雨量比較可獲得0.21的地下水補注率值。

    本研究所建立之水平衡模式的優點在於,僅需要收集三種水文觀測值-河川流量、降雨量、蒸發散量,並將研究區域以網格劃分所求得的空間分佈特性,適用於快速估計大範圍區域的地下水補注量。

    此外,本研究對於191個流量測站進行穩定基流分析之過程發現,隨著所分析測站之地理位置不同而異,其流域之地下水系統排放至河道內的基流量匯集至接近河流終點的流量測站,將會表現出相當穩定的行為,且其低流期表現不明顯;對靠近河川發源地的集水區而言,基流量反應出之行為較不穩定,低流期則表現較為明顯。若能針對此點發現進一步作分析探討,從而歸納出相關經驗法則,或能除去人為判斷穩定基流期之主觀因素,並獲得可信度更高的推估結果。

    The purpose of this research is to estimate groundwater recharge by using streamflow hydrograph models. There are two case studies in this research. Case Study 1: Four methods include, Recession-Curve -Displacement Method (RCDM), Constant Recharge Method (CRM), Base-Flow-Record Estimation (BFRE), and Mathematical Digital Filtering Method (MDFM), are adopted to estimate groundwater recharge in Cho-Shui Shi Basin. Case Study 2: Water Balance Model (WBM) in this research is coupled with Base-Flow-Record Estimation and Stable-Base-Flow Analysis (SBFA) to estimate groundwater recharge in Taiwan. In this research, mapping is achieved by using Geographic Information Systems (GIS) and geostatistics.

    In the case study of Cho-shui Shi Basin, RCDM is constructed to calculate groundwater recharge when evident events occur. However, the inconsequent result that base flow is grater than streamflow is caused by the instantaneous injection given sometimes. CRM is developed to eliminate the inconsequent result in RCDM. Besides, CRM also provides analyzable procedure when continuous recharge events occur. Two baseflow separation methods, BFRE and MDFM, provide a more convenient and faster analytic procedure compared with RCDM and CRM. Although the increment of groundwater recharge is hard to be obtained by BFRE or MDFM in the periods when recharge events occur, it is suggested to adopt BFRE and MDFM in the applications of large scale study area.

    The results obtained from the case study of Taiwan are as followed. The spatial distribution of the long-term mean SBFI is: mountain areas express a rate of 40~60%, the areas of hills and terraces express a rate of 20~40%, and the areas of alluvial plains receive an SBFI between 10~20%, the avearage SBFI obtained by stable-base-flow analysis is about 34.5%; The spatial distribution of long-term mean annual runoff is about 0-1000 mm in the western area, and above 3000 mm in the northeastern corner. The long-term mean runoff ratio for Taiwan is about 55.5%; The spatial distribution of the naturally occurring long-term mean annual groundwater recharge is: The highest rates occur in the northeastern part and the central-eastern part of Taiwan, mountain areas express a rate of 800-2000 mm/year annually, the areas of hills and terraces express a rate of 200-600 mm/year annually, and the areas of alluvial plains receive an annual groundwater recharge below 200 mm. Note that the mean annual groundwater recharge is approach 0 mm in the western edge of Taiwan, which is the most serious land subsidence area in Taiwan; The total groundwater recharge of Taiwan is about 18 billion tons per year, and the groundwater recharge rate is about 0.21.

    The advantages of water balance model estimated in this study are the rapid analytic processes and the low data requirement. At present, stable-base-flow analysis developed in this study still contains subjectivity when determines the stable-base-flow period. But with the analyzed results of 191 streamflow gauging stations by stable-base-flow analysis, it is shown that the low-flow period differs by the position of the gauging station. The low-flow period can be neglected in the downstream area, while the low-flow period presents obviously in the upstream area. This discovery could be the direction to eliminate the uncertainty caused by subjectivity in the further research.

    摘要 I 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 符號表 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 2 第二章 文獻回顧 4 2.1 地下水補注量國外相關文獻回顧 4 2.2地下水補注量國內相關文獻回顧 5 2.3 河川流量分析模式相關文獻回顧 6 第三章 河川流量歷線分析理論模式 10 3.1 瞬間補注法 11 3.1.1 消退曲線位移法 15 3.1.1.1 建立主要消退曲線 18 3.1.1.2 地下水補注量之估計 19 3.2 持續補注法 23 3.3 基流分離法 25 3.3.1 基流資料估計法 27 3.4 數位率波法 30 第四章 地下水補注量推估之案例應用 32 4.1 濁水溪流域地下水補注量推估 32 4.1.1 濁水溪流域概述 34 4.1.2 濁水溪流域選用測站資料 39 4.1.3 瞬間補注法(消退曲線位移法)之推估結果 41 4.1.4 持續補注法之推估結果 46 4.1.5 基流分離法(基流資料估計法)之推估結果 52 4.1.6 數位濾波法之推估結果 55 4.1.7 四模式結果分析比較 58 4.2 台灣地下水補注量推估 61 4.2.1 基流資料估計法以及穩定基流分析 64 4.2.1.1 基流分離 64 4.2.1.2 穩定基流分析 65 4.2.2 水平衡模式建立 68 4.2.3台灣概述 73 4.2.3.1 台灣地形 73 4.2.3.2 台灣氣候 75 4.2.3.3 台灣水文 77 4.2.4 水平衡模式所需參數收集與建立 79 4.2.4.1 GIS應用與區域網格劃分 79 4.2.4.2 台灣河川流量資料 82 4.2.4.3 台灣降雨量資料 84 4.2.4.4 台灣蒸發散資料 86 4.2.5 水平衡模式結果分析 88 4.2.5.1 台灣河川流量測站之基流分離結果 88 4.2.5.2 台灣河川流量測站之穩定基流分析結果 91 4.2.5.3 台灣地下水補注量分析結果 96 4.2.6 台灣地下水補注量相關研究成果比較 106 第五章 結論與建議 108 5.1 本研究結論 108 5.2 本研究建議 111 參考文獻 113 附錄A 127 附錄B 133 附錄C 139 附錄D 149 附錄E 157 附錄F 159 自述 169

    Abutaleb M. F., 1999. The use of infiltration field test for groundwater artificial recharge, Environmental geology, 37(1), pp. 64-71.
    Anderson, M.G., and Burt, T.P., 1980. Interpretation of recession. Journal of Hydrology, v.46, p. 89-101.
    Barnes C. J., Jacobson G., 1994. and Smith G. D., The distributed recharge mechanism in the Australian arid zone, Soil Sci. Soc. Am. J., 58, pp. 31-40.
    Barnes, B.S., 1939. The structure of discharge recession curves. Transactions of American Geophysical Union 20, p. 721-725.
    Bevans, H.E., 1986. Estimating stream-aquifer interactions in coal areas of eastern Kansas by using streamflow records, in Subitzky, Seymour, ed., Selected papers in the Hydrologic Sciences. U.S. Geological Survey Water-Supply Paper 2290, p. 51-64.
    Boussinesq, J. 1877. Essa sur latheories des eaux courantes. Memoires presentes par divers savants a l’Academic des Sciences de l’Institut national de France. Tome XXIII, no. 1.
    Brutsaert W., 1982. Evaporation into the atmosphere. The Netherlands: Kluwer.
    Butler, S.S., 1957. Engineering Hydrology. Prentice Hall, Inc., Englewood Cliffs, NJ. 356 pp.
    Caro R., and P. S. Eagleson, 1981. Estimating aquifer recharge due to rainfall, J. Hydrol., 53, pp. 63-72.
    Chapman T. G., 1991. Comment on “Evaluation of Automated Techniques for Base Flow and Recession Analyses” by R. J. Nathan and T. A. Mcmahon. Water Resources Research, v. 27, no. 7, pp.1783-1784.
    Chen, W. P., and Lee, C. H., 2003. Estimating Ground-Water Recharge from Streamflow Records. Environ. Geol., v. 44, pp. 257-265.
    Chow, V.T., 1964. Handbook of applied hydrology. New York, McGraw-hill, [variously paged].
    Daniel J.F., Cable L.W., and Wolf R.J., 1970. Ground water-surface water relation during periods of overland flow, in Geological Survey Research 1970. U.S. Geological Survey Professional Paper 700-B, p. 219-223.
    Daniel, C.C., III, and Sharpless, N.B., 1983. Ground-water supply potential and procedures for well-site selection in the upper Cape Fear River Basin, North Carolina. North Carolina Department of Natural Resources and Community Development and U.S. Water Resources Council, 73 p.
    Daniel, J.F., 1976. Estimating groundwater evapotranspiration from streamflow records. Water Resources Research, v. 12, no. 3, p. 360-364.
    Dzhamalov, R.G., 1973. Ground-water flow of the Terek-Kuma artesian basin. Nauka Publ., Moscow. (in Russian).
    Evaldi, R.D., and Lewis, J.G., 1983. Base flow and ground water in Upper Sweetwater Valley, Tennessee. U.S. Geological Survey Water-Resources Investigations Report 83-4068. 30 p.
    Faye, R.E., and Mayer, G.C., 1990, Ground-water flow and stream-aquifer relations in the northern coastal plain of Georgia and adjacent parts of Alabama and South Carolina. U.S. Geological Survey Water-Resources Investigations Report 88-4143, 83 p.
    Finch J. W., 1998. Direct groundwater recharge using a simple water-balance model-sensitivity to land surface parameters, J. Hydrol., 211(4), pp. 112-125.
    Gee G. W., P. J. Wierenga, B. J. Andraski, M. H. Young, M. J. Fayer, and M. L. Rockhold, 1994, Variations in water balance and recharge potential at three western desert sites, Soil Sci. Soc. Am. J. Hydrol., 58, pp. 53-72.
    Gerhart, J.M. and Lazorchick, G.J., 1988. Evaluation of the ground-water resources of the lower Susquehanna River basin, Pennsylvania and Maryland. U.S. Geological Survey Water-supply Paper 2284, 128p.
    Glover, R.E., 1964. Ground-water movement. U.S. Bureau of Reclamation Engineering Monograph Series, no. 31, p. 31-34.
    Ground-water flow map of Central and Eastern Europe on a 1 : 1,500,000 scale, 1983, VSEGINGEO Publ., Leningrad.
    Ground-water flow of area of Central and Eastern Europe (Edited by Konoplyantsev A.A.), 1982, VSEGINGEO Publ., Leningrad, pp. 288 (in Russian).
    Hall, F.R. 1968. Base-flow recessionsA review. Water Resources Research. V. 4, no. 5, pp. 973-983.
    Hendrickx J. M. H., A.S. Khan, M.H. Bannink, D. Birch, and C. Kidd, 1991. Numerical analysis of groundwater recharge through stony soils using limited data, J. Hydrol., 127, pp. 173-192.
    Hertzler, R. A., Jr., 1939. Engineering aspects of the influence of forests on mountain streams, Civ. Eng., 9, 487-489.
    Hoos, A.B., 1990. Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee. U.S. Geological Survey Water-Resources Investigations Report 90-4015, 34 p.
    Hornberger, G.M., Ebert, Janet, and Remson, Irwin, 1970. Numerical solution of the Boussinesq Equation for aquifer-stream interaction. Water Resource Research, v. 6, no. 2, p. 601-608.
    Ibrahim, H.A. and Brutsaert, Wilfried, 1965. Inflow hydrographs from large unconfined aquifers. American Society of Civil Engineers, Journal of Irrigation and Drainage Division, v. 91, no. IR 2, p. 21-38.
    Ineson, J. and Downing, R.A., 1964. The ground-water component of river discharge and its relationship to hydrogeology. Journal of the Institution of Water Engineers, v. 18, no. 7, p. 519-541.
    Ingersoll, L. R., Zobel, O. J., and Ingersoll, A. C., 1948. Heat Conduction with Engineering and Geological Applications. McGraw-Hill, New York. Pp. 124-125.
    Johnston, R. H., 1976. Relation of ground water to surface water in four small basins of the Delaware Coastal Plain: Delaware Geological Survey Report of Investigations 24, 56p.
    Kudelin, B.I., 1960. Principles of regional assessment of natural ground-water resources. MGU Publ., Moscow, 344p. (in Russian).
    Kulandaiswamy, V.C., and Seetharaman, S., 1969. A note on Barnes’ method of hydrograph separation. Journal of Hydrology, v. 9, p. 222-229.
    Lebedeva, N.A., 1972. Natural ground-water resources of the Moscow artesian basin. Nedra Publ., Moscow, 148p. (in Russian).
    Lee, C.H., Chen, W.P., Lee, R.H., 2006. Estimation of Groundwater Recharge Using Water Balance Coupled with Base-Flow-Record Estimation and Stable-Base-Flow Analysis. Environ. Geol. (Submitted)
    Linsley, R.K., Jr., Kohler, M.A., and Paulhus, J.L.H., 1982. Hydrology for Engineers(3rd ed.). McGraw-Hill, New York. 508 pp.
    Lyne, V., and Hollick, M., 1979. Stochastic time-variable rainfall-runoff modeling. I.E. Aust. Natl. conf. Publ. 79/10. Inst. Of Eng. Aust. Pp. 89-93.
    Mau, D.P. and Winter T.C., 1997. Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, USA. Ground Water. V. 35, no. 2, pp. 291-304.
    Meyboom, P., 1961. Estimating ground-water recharge from stream hydrographs. Journal of Geophysical Research, v. 66, no. 4, p. 1,203-1,214.
    Moore, G.K. 1992. Hydrograph analysis in a fractured rock terrane. Ground Water. V. 30, no. 3, pp. 390-395.
    Nash, J.E., 1960. Aunit hydrograph study, with particular reference to British catchments, Proc. Inst. Eng., 17, pp. 249-282.
    Nathan, R.J., and McMahon, T.A., 1990. Evaluation of automated techniques for base flow and recession analysis. Water Resources Research, v. 26, no. 7, p. 1,465-1473.
    Nimmo J.R., D.A. Stonestorm, and K.C. Akstin, 1994. The feasibility of recharge rate determination using the steady-state centrifuge method, Soil Sci. Soc. Am. J., 58, pp.49-56.
    Penman, H.L., 1948, Natural evaporation from open water, bare soil and grass, Proc. of the Royal Society of London, Ser. A, 193, pp. 120-148.
    Phillip F. M., 1994. Environmental traces for water movement in desert soils of America Southwest, Soil Sci. Soc. Am. J., 58, pp. 15-24.
    Pinder G.F., and Jones J.F., 1969. Determination of the ground-water component of peak discharge from the chemistry of total runoff. Water Resources Research. V. 5, no. 2, p. 438-445.
    Rennolls K., R. Carnell, and V. Tee, 1980. A descriptive model of the relationship between rainfall and soil water table, J. Hydrol., 47, pp. 103-114.
    Rorabaugh, M. I. 1964. Estimating changes in bank storage and ground water contribution to streamflow. Intern. Assoc. Sci. Hydrol. Publ. Vol. 63, pp.432~441.
    Rorabaugh, M. I. and W. D. Simons. 1966. Exploration of methods relating ground water to surface water, Columbia River Basin-Second phuse. U.S. Geological Survey Openfile Report. 62 pp.
    Rutledge, A.T. and C.C. Daniel III. 1994. Testing an automated method to estimate ground-water recharge from streamflow records. Ground Water. V. 32, no. 2, pp. 180-189.
    Rutledge, A.T., 1991. A new method for calculating a mathematical expression for streamflow recession, in Ritter, W.F., ed., Irrigation and Drainage. National Conference on Irrigation and Drainage, American Society of Civil Engineers, Irrigation and Drainage Division, Honolulu, Hawaii, 1991, Proceedings, p. 337-343.
    Rutledge, A.T., 1992, Methods of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces, in Hotchkiss, W.R. and Johnson, A.I., eds., Regional aquifer systems of the United States, aquifers of the southern and eastern states. American Water Resources Association Monograph Series, no. 17, p. 59-73.
    Rutledge, A.T., 1993. Computer Programs for Describing the Recession of Ground-Water Discharge and for Estimating Mean Ground-Water Recharge and Discharge from Streamflow Records. U.S. Geological Survey. Water Resources Investigations Report 93-4121, 45 p.
    Simmons C. S., and Meyer P. D., 2000, A simplified model for the transient water budget of a shallow unsaturated zone, Water Resour. Res., 36, pp. 2835-2844.
    Singh, K. P. and Stall, J. B., 1971, Derivation of base flow recession curves and parameters. Water Resources Research, v.7, no. 2, pp. 292-303.
    Smyth J. D., E. Bresler, G. W. Gee, and C. T. Kincaid, 1990, Development of an Infiltration Evaluation Methodology for Low-Level Waste Shallow Land Burial Sites, NUREG/CR-5523, PNL-7356, RW, WL.
    Snyder, F.F., 1939. A conception of runoff-phenomena. Transactions of American Geophysical Union 20: p. 725-738.
    Stricker, V. A., 1983. Base flow of streams in the outcrop area of southeastern sand aquifer: South Carolina, Georgia, Alabama, and Mississippi: U.S. Geological Survey Water-Resources Investigations Report 83-4106, 17p.
    Taylor R. G., and K. W. F. Howard, 1996. Groundwater recharge in the Victoria Nile basin of east Africa: support for the soil moisture balance approach using stable isotope tracers and flow modelling, J. Hydrol., 180(1), pp. 31-53.
    Toebes, C., and Strang, D.D., 1964. On recession curves; 1, Recession equations. Journal of Hydrology(New Zealand), v. 3, no. 2, p. 2-14.
    USSR Map of Ground-Water Runoff on a 1 : 2,500,000 scale, 1965, Moscow.
    Viswanathan M. Th., 1984. Recharge characteristic of an unconfined aquifer from the rainfall water table relationship, J. Hydrol., 70, pp. 233-273.
    Vorosmarty CJ, Federer CA, Schloss AL (1998) Potential evaporation functions compared on U.S. watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. Journal of Hydrology 207: 147-169
    Vsevolozhskii, V.A., 1983. Ground-water runoff and water balance of platform structures. Nedra Publ., Moscow, 168p. (in Russian).
    Vsevolozhskii, V.A., I.S., Zektser, A.A. Konoplyantsev, and I.F. Fidelli, 1977. The main principles of regional estimation and mapping of groundwater flow of the Central and Eastern European Area. Journal of Hydrological Sciences (Poland), Vol. 4, No. 2, p. 85-95.
    Wellings S. R., 1984. Recharge of the Chalk aquifer at a site in Hampshire, England, 1. Water balance and unsaturated flow, J. Hydrol., 69, pp. 259-273.
    Wilder, H.B., and Simmons, C.E., 1978. Program for evaluating stream quality in North Carolina. U.S. Geological Survey Circular 764, 16p.
    Wilson, E.M., 1974. Engineering Hydrology, 2nd ed., 232 pp., Macmillan, New York.
    Wood, C.R., Flippo, H.N., Jr., Lescinsky, J.B., and Barker, J.L., 1972. Water Resources of Lehigh County, Pennsylvania. Pennsylvania Geological Survey, 4th ser., Water Resources Report 31, 263 p.
    Yang Y., D. N. Lerner, M. H. Barrett, and J. M. Tellam, 1999. Quantification of groundwater recharge in the city of Nottingham, UK, Environment Geology, 38(3), pp. 183-198.
    Zektser, I.S. 1977. Laws of formation of groundwater runoff study. Nedra Publ., Moscow, 173p. (in Russian).
    Zhang L., W. R. Dawes, T. J. Hatton, and P. H. Reece, G. T. H. Beale, and I. Packer, 1999. Estimation of soil moisture and groundwater recharge using the TOPOG_IRM model, Water Resou. Res., 35(1), pp. 149-161.
    丁澈士,1996,土壤水份收支法應用於地下水補注推估-屏東平原個案研究,第八屆水利工程研討會論文集,p665~672。
    土木科技研究發展文教基金會,1997,地層下陷防治推動綜合計畫子計畫九-雲嘉地區安全出水量之估算,經濟部水資源局,1997。
    中興工程,1998,濁水溪沖積扇地表地下水聯合運用第二階段-濁水溪沖積扇地下水人工補注計畫規劃報告,經濟部水利處。
    王明盛,1987,地表與地表下逕流歷線之研究,國立成功大學土木工程研究所碩士論文。
    王信權,1990,河川岸邊貯蓄對地下水流場之影響,國立成功大學水利及海洋工程研究所碩士論文。
    王淑如,1999,森林集水區暴雨流出量及貯水量關係之研究,國立中興大學水土保持研究所碩士論文。
    李天浩等,1997,台灣地區地下水觀測網第一期計畫地下水觀測網之建立及運作管理八十六年子計畫報告-濁水溪沖積扇扇頂平原地區地表垂向補注量估計,經濟部水利處。
    李如晃,1988,水文系統反向推估模式之研究及其應用於曾文溪流域之逕流解析,國立台灣大學農業工程研究所碩士論文。
    李如晃,1998,有色噪音效應對灰色模式參數估計影響之研究及其於水文分析上之應用,國立台灣大學農業工程學研究所博士論文。
    李振誥、馬惠達,2002,“金崙與和美福隆地區溫泉資源探勘分析與檢討”,溫泉資源開發技術與保育管理研討會論文集,p157~194。
    李振誥,陳尉平,李如晃,2002,應用基流資料估計法推估台灣地下水補注量,台灣水利季刊,第五十卷,第一期,69-80頁。
    李振誥、許清荃、林俶寬,2000,濁水溪沖積扇多層地下水調配與管理之研究,台灣水利季刊,四十八卷,第四期,41-52頁。
    官彥均,1991,新設站推估低流量特性之方法,國立台灣大學農業工程研究所碩士論文。
    林永禎,1996,暴雨─逕流模式之建立與應用,國立台灣大學土木工程研究所碩士論文。
    林癸妙、吳瑞賢、蘇文瑞、簡傳彬,1997,區域水收支模式建立與探討-以桃園地區為例,農業工程研討會,145-151頁。
    林再興、陳時祖、李振誥,1998,地層下陷防治綜合計畫子計畫四-彰化地層下陷區地下水入滲補注及安全出水量之評估,經濟部水資局。
    邱敏農,2000,以河川流量歷線推估台灣中部森林集水區地下水補注及其流出量之研究,國立中興大學水土保持研究所碩士論文。
    姜儷安、歐陽湘,1997,雲林地區地下水與水平衡初步分析,濁水溪沖積扇地下水及水文地質研討會論文集,181-206頁。
    孫維廷,2001,應用分佈式元件與水筒模式建立降雨-逕流模式之研究,國立台灣大學土木工程研究所碩士論文。
    張吉佐、劉俊臣,1997,濁水溪中游地區地下水補注調查與評估,經濟部水資源局八十五年度地下水觀測網暨地層下陷防治計劃成果發表會,55-72頁,台北市。
    張誠信,1996,雲林地區地下水流三維數值模擬,台灣大學農業工程研究所碩士論文。
    許文銓,1996,關刀溪森林集水區逕流特性之研究,國立中興大學水土保持研究所碩士論文。
    許祖瑜,1997,台灣南部河川枯流量與地文因子的關係,國立成功大學水利及海洋工程研究所碩士論文。
    陳志忠,1997,彰化地區淺層土壤入滲行為之研究,國立成功大學資源工程研究所碩士論文。
    陳尉平、李振誥、陳進發,1999,由河川流量資料與流量歷線推估濁水溪流域地下水補注量,台灣水利季刊,第四十七卷,第三期,55-65頁。
    陳進發,1998,彰化地區未飽和層水平衡分析之研究,國立成功大學資源工程研究所碩士論文。
    游添財,1986,集水區降雨-逕流模式系統分析之初步研究,國立成功大學水利及海洋工程研究所碩士論文。
    黃景春,1988,水筒模式在臺灣子集水區暴雨逕流分析應用上之研究--畢祿溪集水區之水文分析,國立台灣大學森林研究所博士論文。
    黃瓊、陸象豫、林壯沛,1998,臺灣東部國有林集水區水文特性之研究,台灣林業科學,第13期,第三卷,199-207頁。
    楊益嘉,1997,區域水資源承載力可靠度分析-以中港溪流域為例,國立海洋大學河海工程研究所碩士論文。
    葉文工,1998,台灣沿海地區地下水超抽改善方案研擬與評估(),經濟部水資源局。
    葉耀駿,2001,台灣河川溪流上游中小型集水區年基流量之研究,國立中興大學水土保持研究所碩士論文。
    虞國興,1981,烏溪流域最佳經濟用水之研究,國立台灣大學農業工程研究所碩士論文。
    謝熾昌,1991,彰化縣和美地區地下水資源之研究,國立台灣師範大學地理學研究所碩士論文。
    劉振宇、李天浩、蘇明道、林國峰,1998,濁水溪沖積扇扇央與扇尾平原區地表垂向補注量評估,經濟部水資源局。
    劉聰桂、宋聖榮,2002,“溫泉水質與水量”,溫泉資源開發技術與保育管理研討會論文集,p69~88。
    鄭順贏,1987,河川水質站流出污染量模式之分析,國立成功大學環境工程研究所碩士論文。
    賴昱宏,1992,流域暴雨逕流模式與系統參數推估之研究,國立台灣大學農業工程研究所碩士論文。
    鍾啟榮,1998,關刀溪森林集水區降雨與逕流關係之研究,國立中興大學水土保持研究所碩士論文。
    羅均龍,2001,台灣中部二個森林集水區之低水流量特性及儲水量對水平衡之影響,國立中興大學水土保持研究所碩士論文。
    水資源局(現水利署),台灣地區合理之蒸發散折算係數與區域蒸發散量估算方法之建立(2/2),經濟部水資源局研究報告。
    水利署,2003,台灣水文地質圖,經濟部水利署研究報告。
    陳進發、李振誥、陳尉平,1999,應用未飽和層水平衡理論估計彰化地區地下水補注量之研究,台灣水利季刊,第四十七卷,第一期,54-66頁。
    王如意、洪君伯、李如晃,1997,水文模式中噪音效應之研究及其應用,農業工程學報,43期第三卷,1-19頁。
    劉聰桂,1994,由碳十四定年與氚示蹤探討濁水溪沖積扇地下水的流速與補注,地下水資源與水質保護研討會,1-23頁。
    工業技術研究院能源與資源研究所,2002“台灣溫泉水資源之調查及開發利用(3/4)”,經濟部水資源局。
    能邦科技顧問股份有限公司,2000,台灣地區地下水補注量估算,經濟部水資源局委辦計畫期末報告。

    下載圖示 校內:立即公開
    校外:2006-07-27公開
    QR CODE