簡易檢索 / 詳目顯示

研究生: 張謦
Chang, Cing
論文名稱: 氣候變遷下臺灣都市建築能源脆弱度及風險研究
Energy vulnerability and risk of urban buildings in Taiwan under climate change
指導教授: 林子平
Lin, Tzu-Ping
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 127
中文關鍵詞: 都市建築能源需求冷房度時能源脆弱度主成分分析氣候變遷
外文關鍵詞: Urban building energy demand, Cooling degree hours, Energy vulnerability, Principal component analysis, Climate change
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球氣候變遷與極端高溫頻率上升的背景下,都市建築冷房能源需求快速增加,加劇能源分配不均與社會弱勢暴露於能源風險之下。隨著ESG(環境、社會與治理)永續標準逐漸成為政策與產業實踐的共識,建築部門的能源韌性與氣候調適能力成為城市治理關鍵指標之一。本研究以IPCC氣候風險架構為理論基礎,建構「都市建築能源脆弱評估指標」,針對氣候危害(Hazard)、暴露(Exposure)與脆弱度(Vulnerability)進行量化分析,提出一套具空間尺度應用能力的能源風險辨識工具。
    本研究以冷房度時(Cooling Degree Hours, CDH)為危害指標,透過TReAD與HiRAM兩種高解析氣候資料進行都市高冷房負荷的評估,並結合建築地籍、人口統計、社經資料與空間圖資,建立能源暴露模型與脆弱指標。在升溫2°C情境下,全台75%共259個行政區的CDH超過15,000°C-hour,顯示冷房需求高風險區域擴大。其中台中、台南、高雄、台北等都會區核心地帶之建築密集區尤為顯著。
    為量化能源脆弱性,本研究採用等權重法與主成分分析法(PCA)建構能源脆弱度指標(Energy Vulnerability Index, EVI),並以行政區與村里為兩種空間尺度進行比較。PCA法在統計性與空間辨識能力方面優於等權重法,其EVI標準差為1.545,可揭示更多細部變異。在空間相關性分析中,PCA方法下46.46%的行政區呈顯著聚集現象,高於等權重法之37.7%,更適合應用於高密度的都會區。
    本研究建議未來能源調適政策應採多尺度、分層應用策略:以等權重法快速掌握全區風險分佈,並於焦點區域導入PCA進行更精細分析與社區層級治理。研究成果可支援中央與地方政府推動建築節能補助、社宅新建改造、弱勢族群補貼與都市更新等具體政策,並呼應能源正義與氣候調適的全球永續目標。

    Under global climate change, rising cooling energy demand in urban areas increases energy inequality and risks, especially for vulnerable groups. This study adopts the IPCC climate risk framework to develop an Energy vulnerability index (EVI), integrating hazard, exposure, and vulnerability indicators. Using Cooling degree hours (CDH) as the hazard metric, and high-resolution climate datasets, TReAD and HiRAM. The study assesses spatial cooling loads across Taiwan. Results show that under 2°C warming, 75% of 259 districts exceed 15,000°C-hours, with high-risk zones concentrated in dense metro areas like Taipei, Taichung, Tainan, and Kaohsiung.
    EVI is constructed using both equal weight and principal component analysis (PCA) methods. PCA outperforms the equal weight method in identifying spatial clusters (46.46% vs. 37.7%) and capturing index variation (SD = 1.545). The study recommends applying the equal weight method for rapid large-scale assessments and PCA for detailed analysis in priority zones.
    The findings support multi-scale energy adaptation strategies, including subsidies for building retrofits, social housing improvements, and targeted policies for climate resilience and energy justice aligned with ESG and SDG goals.

    第一章、 緒論 1 第一節、 研究背景與動機 1 第二節、 研究目的 3 第三節、 研究流程 4 第二章、 文獻回顧 5 第一節、 氣候變遷下的能源使用 5 第二節、 都市能源風險評估架構 7 第三節、 都市建築能源模型 9 第四節、 脆弱度指標評估回顧 10 第三章、 研究方法 13 第一節、 研究範圍 13 第二節、 能源暴露:都市能源預估模型 18 第三節、 危害:建築冷房負荷 23 第四節、 脆弱度:環境、經濟與社會數據 27 第五節、 指標建構方法 33 第六節、 空間分析 36 第四章、 研究結果 37 第一節、 高冷房負荷地圖 37 第二節、 都市建築能耗地圖 40 第三節、 脆弱度地圖 44 第四節、 能源脆弱地圖 58 第五節、 等權重與PCA方法的比較 62 第六節、 風險地圖 65 第五章、 氣候變遷下的能源脆弱度 67 第一節、 氣候變遷下的供冷趨勢 67 第二節、 升溫2°C下的能源脆弱分布 71 第六章、 村里尺度能源脆弱評估 75 第一節、 結合GIS及氣候數據的能源模型建立方法 75 第二節、 村里能源模型結果與能源地圖 79 第三節、 村里尺度的能源脆弱結果 83 第四節、 能源脆弱與社會住宅之議題 89 第七章、 結論 92 第一節、 研究結論 92 第二節、 政策應用建議 94 第三節、 研究限制與後續建議 96 參考文獻 97 附錄 104

    1. Adger, W. N. (2006). Vulnerability. Global environmental change, 16(3), 268-281.
    2. Al-Hadhrami, L. (2013). Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renewable and sustainable energy reviews, 27, 305-314.
    3. Arnold Jr, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American planning Association, 62(2), 243-258.
    4. Auffhammer, M., Baylis, P., & Hausman, C. H. (2017). Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proceedings of the National Academy of Sciences, 114(8), 1886-1891.
    5. Balica, S. F., Wright, N. G., & Van der Meulen, F. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural hazards, 64, 73-105.
    6. Benmarhnia, T., Deguen, S., Kaufman, J. S., & Smargiassi, A. (2015). Vulnerability to heat-related mortality: A systematic review, meta-analysis, and meta-regression analysis. Epidemiology, 26(6), 781-793.
    7. Bhatnagar, M., Mathur, J., & Garg, V. (2018). Determining base temperature for heating and cooling degree-days for India. Journal of Building Engineering, 18, 270-280.
    8. Boardman, B. (1991). Fuel poverty is different. Policy Studies, 12(4), 30-41.
    9. Bohr, J., & McCreery, A. C. (2020). Do energy burdens contribute to economic poverty in the United States? A panel analysis. Social Forces, 99(1), 155-177.
    10. Bouzarovski, S., & Petrova, S. (2015). A global perspective on domestic energy deprivation: Overcoming the energy poverty–fuel poverty binary. Energy Research & Social Science, 10, 31-40.
    11. Brøgger, M., & Wittchen, K. B. (2018). Estimating the energy-saving potential in national building stocks–A methodology review. Renewable and sustainable energy reviews, 82, 1489-1496.
    12. Bu, S., Smith, K. L., Masoud, F., & Sheinbaum, A. (2024). Spatial distribution of heat vulnerability in Toronto, Canada. Urban Climate, 54. https://doi.org/10.1016/j.uclim.2024.101838
    13. Bureau of Energy, M. o. E. A., R.O.C. (2023). Handbook of energy statistics https://www.esist.org.tw/
    14. Büyükalaca, O., Bulut, H., & Yılmaz, T. (2001). Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy, 69(4), 269-283.
    15. Castro, C. C., & Gouveia, J. P. (2025). Chilling and sweltering at home: Surveying energy poverty and thermal vulnerability among Portuguese higher education students. Energy Research & Social Science, 119, 103842.
    16. Central Intelligence Agency. (2024). The World Factbook: Urbanization. Retrieved January 14,2025. https://www.cia.gov/the-world-factbook/field/urbanization/
    17. Cerezo Davila, C., Reinhart, C. F., & Bemis, J. L. (2016). Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets. Energy, 117, 237-250. https://doi.org/10.1016/j.energy.2016.10.057
    18. Chang, C., Chen, C.-Y., & Lin, T.-P. (2024). Combining geographic information and climate data to develop urban building energy prediction models in Taichung, Taiwan. Sustainable Cities and Society, 117, 105949.
    19. Chapman, S., Watson, J. E., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32, 1921-1935.
    20. Chen, C.-F., Feng, J., Luke, N., Kuo, C.-P., & Fu, J. S. (2022). Localized energy burden, concentrated disadvantage, and the feminization of energy poverty. IScience, 25(4).
    21. Chen, T.-L., Lin, H., & Chiu, Y.-H. (2022). Heat vulnerability and extreme heat risk at the metropolitan scale: A case study of Taipei metropolitan area, Taiwan. Urban Climate, 41, 101054.
    22. Chen, W.-A., Chen, C.-f., Liu, M., & Rickard, R. (2024). Unraveling the complexities: Impacts of energy burden on the built environment challenges among assistance-dependent populations in the United Kingdom. Building and Environment, 254, 111385.
    23. Chen, Y., Hong, T., & Piette, M. A. (2017). Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Applied Energy, 205, 323-335.
    24. Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social science quarterly, 84(2), 242-261.
    25. EIA. (2023). Degree days. U.S. Energy Information Administration. https://www.eia.gov/energyexplained/units-and-calculators/degree-days.php
    26. Errebai, F. B., Strebel, D., Carmeliet, J., & Derome, D. (2022). Impact of urban heat island on cooling energy demand for residential building in Montreal using meteorological simulations and weather station observations. Energy and Buildings, 273, 112410.
    27. Ferrando, M., Causone, F., Hong, T., & Chen, Y. (2020). Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches. Sustainable Cities and Society, 62, 102408.
    28. Guo, X., Huang, G., Jia, P., & Wu, J. (2019). Estimating fine-scale heat vulnerability in Beijing through two approaches: spatial patterns, similarities, and divergence. Remote Sensing, 11(20), 2358.
    29. Harlan, S. L., Declet-Barreto, J. H., Stefanov, W. L., & Petitti, D. B. (2013). Neighborhood effects on heat deaths: social and environmental predictors of vulnerability in Maricopa County, Arizona. Environmental health perspectives, 121(2), 197-204.
    30. Heiple, S., & Sailor, D. J. (2008). Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy and Buildings, 40(8), 1426-1436.
    31. Howard, B., Parshall, L., Thompson, J., Hammer, S., Dickinson, J., & Modi, V. (2012). Spatial distribution of urban building energy consumption by end use [Article]. Energy and Buildings, 45, 141-151. https://doi.org/10.1016/j.enbuild.2011.10.061
    32. Hua, J., Zhang, X., Ren, C., Shi, Y., & Lee, T.-C. (2021). Spatiotemporal assessment of extreme heat risk for high-density cities: A case study of Hong Kong from 2006 to 2016. Sustainable Cities and Society, 64, 102507.
    33. Hwang, R.-L., Lin, C.-Y., & Huang, K.-T. (2017). Spatial and temporal analysis of urban heat island and global warming on residential thermal comfort and cooling energy in Taiwan. Energy and Buildings, 152, 804-812. https://doi.org/10.1016/j.enbuild.2016.11.016
    34. Hwang, R.-L., Lin, T.-P., & Lin, F.-Y. (2020). Evaluation and mapping of building overheating risk and air conditioning use due to the urban heat island effect. Journal of Building Engineering, 32. https://doi.org/10.1016/j.jobe.2020.101726
    35. IEA. (2022). World Energy Outlook 2022 https://www.iea.org/reports/world-energy-outlook-2022/executive-summary
    36. IPCC. (2014). AR5 Synthesis Report: Climate Change 2014. https://www.ipcc.ch/report/ar5/syr/
    37. IPCC. (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/chapter/technical-summary/ts-0-introduction/ipcc-srocc-ts_4/
    38. IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. https://www.ipcc.ch/report/ar6/wg2/
    39. IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Core Writing Team, H. Lee and J. Romero (eds.)] . IPCC,Geneva, Switzerland, pp.35-115. https://doi.org/10.59327/IPCC/AR6-9789291691647
    40. Isaac, M., & Van Vuuren, D. P. (2009). Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, 37(2), 507-521.
    41. Jenkins, K., McCauley, D., Heffron, R., Stephan, H., & Rehner, R. (2016). Energy justice: A conceptual review. Energy Research & Social Science, 11, 174-182.
    42. Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer.
    43. Kohler, M., Blond, N., & Clappier, A. (2016). A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Applied Energy, 184, 40-54.
    44. Kontokosta, C. E., & Tull, C. (2017). A data-driven predictive model of city-scale energy use in buildings. Applied Energy, 197, 303-317.
    45. Korkmaz, E., & Kurkcuoglu, M. A. S. (2025). Analysis of the socio-spatial vulnerabilities to energy poverty factors of Türkiye. Energy and Buildings, 115343.
    46. Larsen, R., & Warne, R. T. (2010). Estimating confidence intervals for eigenvalues in exploratory factor analysis. Behavior research methods, 42, 871-876.
    47. Lee, K., Baek, H.-J., & Cho, C. (2014). The estimation of base temperature for heating and cooling degree-days for South Korea. Journal of applied meteorology and climatology, 53(2), 300-309.
    48. Li, C., Zhou, J., Cao, Y., Zhong, J., Liu, Y., Kang, C., & Tan, Y. (2014). Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season. Applied Energy, 117, 149-156.
    49. Li, F., Yigitcanlar, T., Nepal, M., Nguyen, K., Dur, F., & Li, W. (2024). Assessing heat vulnerability and multidimensional inequity: Lessons from indexing the performance of Australian capital cities. Sustainable Cities and Society, 115, 105875.
    50. Li, W., Chien, F., Hsu, C.-C., Zhang, Y., Nawaz, M. A., Iqbal, S., & Mohsin, M. (2021). Nexus between energy poverty and energy efficiency: estimating the long-run dynamics. Resources Policy, 72, 102063.
    51. Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., & Li, W. (2019). Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 174, 407-419.
    52. Lin, F. Y., Lin, T. P., & Hwang, R. L. (2017). Using geospatial information and building energy simulation to construct urban residential energy use map with high resolution for Taiwan cities [Article]. Energy and Buildings, 157, 166-175. https://doi.org/10.1016/j.enbuild.2017.01.040
    53. Lin, P. Y., Cheng, C.-T., Chen, Y.-M., & Chien, Y.-T. (2020). The 40-year Taiwan Historical Climate Data. National Science and Technology Center for Disaster Reduction. https://tccip.ncdr.nat.gov.tw/km_publish_technical_report_one.aspx?tr_id=20210825174251
    54. Liu, J. C.-E., & Huang, K.-H. (2025). Living on the edge: Energy poverty and housing inequality in Taipei's rooftop extensions. Energy Research & Social Science, 126, 104156.
    55. Maragno, D., Dalla Fontana, M., & Musco, F. (2020). Mapping heat stress vulnerability and risk assessment at the neighborhood scale to drive Urban adaptation planning. Sustainability, 12(3), 1056.
    56. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., & Pidcock, R. (2019). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of, 1, 93-174.
    57. Middlemiss, L., & Gillard, R. (2015). Fuel poverty from the bottom-up: Characterising household energy vulnerability through the lived experience of the fuel poor. Energy Research & Social Science, 6, 146-154.
    58. Ministry of Interior, R. O. C. (2024). Low-use (electricity) residential. https://pip.moi.gov.tw/V3/E/SCRE0104.aspx
    59. Ministry of the Interior, R. O. C. (2019). Technical Specifications for Building Energy Saving Design. In.
    60. National Land Surveying and Mapping Center. (2020). Land Use Investigation https://www.nlsc.gov.tw/en/cp.aspx?n=2114
    61. Nations, U. (2023). The Sustainable Development Goals Report 2023: Special Edition. United Nations New York, NY, USA.
    62. NDC. (2022). Taiwan’s Pathway to Net-Zero Emissions in 2050. National Development Council of Taiwan. https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811
    63. Okushima, S., & Simcock, N. (2024). Double energy vulnerability in Japan. Energy Policy, 191, 114184.
    64. Panda, D., & Pradhan, R. P. (2024). Spatial vulnerability of energy poverty among the households in Odisha. Energy for Sustainable Development, 83, 101578.
    65. Programme, U. N. E. (2021). Global status report for buildings and construction. Global Alliance for Building and Construction.
    66. Randazzo, T., De Cian, E., & Mistry, M. N. (2020). Air conditioning and electricity expenditure: The role of climate in temperate countries. Economic Modelling, 90, 273-287.
    67. Reinhart, C. F., & Davila, C. C. (2016). Urban building energy modeling–A review of a nascent field. Building and Environment, 97, 196-202.
    68. Salata, F., Falasca, S., Ciancio, V., Curci, G., Grignaffini, S., & de Wilde, P. (2022). Estimating building cooling energy demand through the Cooling Degree Hours in a changing climate: A modeling study. Sustainable Cities and Society, 76, 103518.
    69. Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and Buildings, 98, 119-124.
    70. Schueler, T. (1994). The importance of impervious. Watershed Prot Tech 1(3):100–111.
    71. Shen, Z., Chen, C.-f., Zhou, H., Fefferman, N., & Shrestha, S. (2023). Community vulnerability is the key determinant of diverse energy burdens in the United States. Energy Research & Social Science, 97, 102949.
    72. Shi, Y., Han, Z., Xu, Y., & Xiao, C. (2021). Impacts of climate change on heating and cooling degree‐hours over China. International Journal of Climatology, 41(3), 1571-1583.
    73. Shi, Y., Zhang, D.-F., Xu, Y., & Zhou, B.-T. (2018). Changes of heating and cooling degree days over China in response to global warming of 1.5 C, 2 C, 3 C and 4 C. Advances in Climate Change Research, 9(3), 192-200.
    74. Song, J., Huang, B., Kim, J. S., Wen, J., & Li, R. (2020). Fine-scale mapping of an evidence-based heat health risk index for high-density cities: Hong Kong as a case study. Science of the Total Environment, 718, 137226.
    75. Street, M., Reinhart, C., Norford, L., & Ochsendorf, J. (2013). Urban heat island in Boston–an evaluation of urban air temperature models for predicting building energy use.
    76. Su, Y.-W. (2020). Residential electricity demand in Taiwan: the effects of urbanization and energy poverty. Journal of the Asia Pacific economy, 25(4), 733-756.
    77. Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and sustainable energy reviews, 13(8), 1819-1835.
    78. Tate, E., Rufat, S., Rahman, M. A., & Hoover, S. (2025). Profiles of Social Vulnerability for Flood Risk Reduction. International Journal of Disaster Risk Reduction, 105250.
    79. TCCIP. (2023). Atlas of Taiwan Climate Change Indices- AR6 Statistical Downscaling. National Science and Technology Center for Disaster Reduction. https://tccip.ncdr.nat.gov.tw/km_publish.aspx
    80. Tsikaloudaki, K., Laskos, K., & Bikas, D. (2011). On the establishment of climatic zones in Europe with regard to the energy performance of buildings. Energies, 5(1), 32-44.
    81. U.S. Department of Energy. (2025). Low-Income Community Energy Solutions https://www.energy.gov/eere/slsc/low-income-community-energy-solutions(accessed
    82. Wang, Z., Hong, T., Li, H., & Piette, M. A. (2021). Predicting city-scale daily electricity consumption using data-driven models. Advances in Applied Energy, 2, 100025.
    83. Xu, Z., Sheffield, P. E., Su, H., Wang, X., Bi, Y., & Tong, S. (2014). The impact of heat waves on children’s health: a systematic review. International journal of biometeorology, 58, 239-247.
    84. Zheng, S., Huang, G., Zhou, X., & Zhu, X. (2020). Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China. Applied Energy, 261, 114295.
    85. 內政部不動產資訊平台. (2025). 什麼是社會住宅. https://pip.moi.gov.tw/Publicize/Info/B5010?mode=A1
    86. 林子平, 何友鋒, & 楊鴻銘. (2005). 都市地表不透水率之預估與分析: 以台中市為例. 都市與計劃, 32(3), 333-354.
    87. 林憲德, & 陳嘉基. (1987). 台灣地區建築氣候分區之研究. 國立台灣大學建築與城鄉研究學報, 145-165.
    88. 張謦. (2019). 基於土地使用分區及實際使用狀況之都市建築能耗簡易預估方法研究 國立成功大學碩士論文.
    89. 陳育成. (2018). 臺灣都市氣候地圖之研究 國立成功大學博士論文].
    90. 陳禹銘, 蘇昭郎, & 樊國恕. (2009). 災害風險評估研究之探討. 危機管理學刊, 6(1), 41-50.
    91. 勞動部職業安全衛生署. (2025). 熱危害風險等級查詢計算. https://hiosha.osha.gov.tw/content/info/heat1.aspx
    92. 經濟部能源署. (2023). 2023年能源供給概況 https://www.moeaea.gov.tw/ECW/populace/content/Content.aspx?menu_id=14435
    93. 經濟部能源署. (2024). 112年發電概況. https://www.moeaea.gov.tw/ECW/populace/content/Content.aspx?menu_id=14437
    94. 葉惟中. (2021). 村里等級建築能源耗用評估及全台能耗地圖之建立 國立成功大學碩士論文.
    95. 劉皓仁. (2016). 住房制度與策略:荷蘭與英國的公共住宅發展經驗的啟示. 國會月刊, 44:2=514 2016.02[民105.02] , 5-25.
    96. 蘇梓靖. (2015). 美國Energy Star建築EUI營運因子正規化修正分析技術報告 工業技術研究院.

    無法下載圖示 校內:2027-08-01公開
    校外:2027-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE