| 研究生: |
李恒儀 Li, Heng-Yi |
|---|---|
| 論文名稱: |
應用小波函數對磁阻尼與磁剛性係數之鑑別 Identification of Magnetic Damping and Stiffness Coefficients by Wavelet Functions |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 磁阻尼及磁剛性係數 、系統鑑別 、小波轉換 、主動式磁浮軸承系統 |
| 外文關鍵詞: | System Identification, Wavelet Transform, Magnetic Damping, Active Magnetic Bearing, Magnetic Stiffness |
| 相關次數: | 點閱:110 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在利用小波轉換及Morlet小波,對應用於往復式壓縮機之磁浮軸承/推桿進行磁剛性與磁阻尼的鑑別。透過小波時頻分析,擷取出代表自然頻率的骨根圖,根據骨根隨自然頻率變動的樣式,以小波的線性與非線性鑑別法則,先進行數值模擬來驗證所開發電腦程式的正確性,再透過實際的磁浮軸承/推桿系統,證實與量化非線性磁阻尼、非線性磁阻尼之負阻尼及高階磁剛性,並求得系統磁阻尼與機械阻尼的比重。本文採dSPACE 1104套裝介面、四極主動式磁浮軸承、光學測距器與Matlab程式語言作為實驗工具及設備。
The purpose of this thesis is to apply the Wavelet Transform algorithm to identify magnetic damping and magnetic stiffness coefficients of the linear compressor system in which a 4-pole active magnetic bearing (AMB) is embedded. By using time-frequency analysis of wavelet, the ridge of the processed signal shown in Wavelet form can be extracted to find the natural frequency of the system. The results of experimental simulations verify that the Wavelet identification method is able to quantify the nonlinear magnetic damping coefficients, the fundamental and higher-order stiffness of the rod dynamic in the magnetic levitation system. The test rig is equipped with dSPACE 1104 interface board, a 4-pole active magnetic bearing, a laser diode sensor and the software environment by MATLAB.
[1] C. K. Chui, “An Introduction to Wavelet,” Academic Press, 1992.
[2] P. Goupillauda, A. Grossmann, J. Morleta, “Cycle-octave and related transforms in seismic signal analysis,” Geoexploration Amsterdam, Vol. 23, n1, p 85-102, 1984.
[3] Mallat, Stephane, “Compact Multiresolution Representation: The Wavelet Model,” Proceedings of the IEEE Computer Society Workshop on Computer Vision, p 2-7, 1987.
[4] W. J. Staszewski, “Identification of Damping in MDOF Systems Using Time-scale Decomposition,” Journal of Sound and Vibration, Vol.203, p 283-305, 1997.
[5] W. J. Staszewski, “Identification of Non-Linear Systems Using Multi-scale Ridges and Skeletons of the Wavelet Transform,” Journal of Sound and Vibration, Vol.214, p 639-658, 1998.
[6] J. Lardies, S. Gouttebroze, “Identification of Modal Parameters Using the wavelet Transform,” International Journal of Mechanical Sciences, Vol.44, p 2263-2283, 2002.
[7] S. Erlicher, P. Argoul, “Modal Identification of Linear Non-proportionally Damped Systems by Wavelet Transform,” Mechanical Systems and Signal Processing, Vol.21, p 1386-1421, 2007.
[8] J. Zhang, C. Wang, S. Hu, “Identification of Nonlinear Systems Through Time-frequency Filtering Technique,” Journal of Vibration and Acoustics, Vol.125, p 199-204, 2003.
[9] Cyril M. Harris, Charles E. Crede, “Shock and Vibration Handbook,” Vol.1,McGraw-Hill, p 4-15, 1961.
[10] M.-N. Ta, J. Lardies, “Identification of Weak Nonlinearities on Damping and Stiffness by the Continuous Wavelet Transform,” Journal of Sound and Vibration, Vol.293, p 16-37, 2006.
[11] M. Misiti, Y. Misiti, G. Oppenheim, J.-M. Poggi, “Wavelet Toolbox User’s Guide,” The MathWorks, 2002.
[12] N.-C. Tsai, C.-W. Chiang, H.-Y. Li (2009), “Innovative active magnetic bearing design to reduce cost and energy consumption, " Electromagnetics, Vol. 29, No.5, p. 406-420.
[13] S. A. Billing, H. L. Wei,” The wavelet-NARMAX representation: A hybrid model structure combining polynomial models with multiresolution wavelet decompositions,” International Journal of Systems Science, Vol.36, n 3, p 137-152, 2005.
[14] A. Rahib Hidayat, K. Okyay, “Fuzzy wavelet neural networks for identification and control of dynamic plants - A novel structure and a comparative study,” IEEE Transactions on Industrial Electronics, p 3133-3140, 2008.
[15] S. Hassani, A. Alaoui Soulimani, A. Ehrlacher, ”A nonlinear viscoelastic model: the pseudo-linear model,” European Journal of Mechanics, A/Solids, Vol.17, p 567-598, 1998.
[16] Feldman M., “Non-Linear System Vibration Analysis Using Hilbert Transform,” Proceedings of SPIE - The International Society for Optical Engineering, v 1923, p 799-805, 1993.
[17] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H., “The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis”, Proc. R. Soc. Lond. A 454, p 903-995, 1998.
[17] Y.-M. Chen, S.-Y. Fan, W.-S. Liu, “Electromagnetic-Force Analysis of the Magnetically Levitated Motor With Two With Two Directions of Movement,” IEEE Transactions on Industry Applications, Vol.42, p 31-41, 2006.
[18] M. Lakshmanan, S. Rajasekar, “Nonlinear Dynamics,” Springer, 2002.
[19] C. K. Chui, “Wavelet: A Tutorial in Theory and Applications,” Academic Press, 1992.
[20] S. Mallat, “A Wavelet Tour of Signal Processing,” Academic Press, 1998.
[21] A. V. Oppenheim, A. S. Willsky, S. H. Nawab, “Signals & Systems 2nd Edition,” Prentice-Hall, 1996.
[22] 吳劍秋,1996,”基礎電磁學”,全華圖書公司。
[23] 楊國輝,2000,”應用電磁學”,五南圖書公司。
[24] 單維彰,1998,”凌波初步”,全華圖書公司。
[25] 張智星,2007,”Matlab 程式設計”,鈦思科技。
[26] 王栢村,2007,”振動學”,全華圖書公司。