簡易檢索 / 詳目顯示

研究生: 吳庭宜
Wu, Ting-Yi
論文名稱: 以ECCI技術分析變形與退火過程中Crofer 22 H不鏽鋼中差排組織之演化
Dislocation Structure Analysis of Deformed and Annealed Crofer 22 H Stainless Steel using ECCI Technique
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 73
中文關鍵詞: ECCICrofer 22 H差排組織塑性變形退火
外文關鍵詞: Electron channeling contrast imaging (ECCI), Crofer 22 H,, Dislocation structures, Plastic deformation, Annealing
相關次數: 點閱:108下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子通道對比影像(ECCI)技術為掃描式電子顯微鏡(SEM)中的一項技術,可直接觀測到在晶體材料上,奈米層級的表面缺陷,例如:差排、疊差及奈米雙晶等。此篇論文使用Crofer 22 H不鏽鋼為實驗材料,藉由ECCI分別觀測不同變形量以及退火處理時間對差排組織之影響。並使用穿透式電子顯微鏡(TEM)中之不可見判定公式(Invisibility criteria),分析差排之滑移系統以及判斷其種類。最後藉由比較不同退火階段之ECCI觀測了到由差排組織到析出物組織之間的演化過程。

    Electron channeling contrast imaging (ECCI) is a powerful technique in the scanning electron microscope (SEM), which can be used to observe crystal defects near the surface of bulk materials in nano-scale, such as dislocations, stacking faults and nano-twins. In this study, we used Crofer 22 H stainless steel to observe the microstructure after deformation and annealing in a bcc structure. By the invisibility criteria of transmission electron microscope (TEM), it is possible to analyze the slip system with ECCI taken at different g vectors. By comparing ECCI after different steps of annealing, we observed the evolution of dislocation structure and the precipitation.

    中文摘要 I Extended Abstract II 目錄 X 表目錄 XIV 圖目錄 XV 第一章 前言 1 第二章 文獻回顧與相關理論 2 2.1 電子通道對比影像技術 3 2.1.1 背向散射電子散射機制與電子通道效應 6 2.1.2 布洛赫波 9 2.1.3 電子通道對比 14 2.2 差排理論 17 2.2.1 晶體結構與差排滑移系統 17 2.2.2  g向量與雙束條件 18 2.2.3 柏格斯向量及滑移系統判定公式 21 第三章 材料與實驗方法 22 3.1 實驗材料 22 3.2 實驗流程圖 23 3.3 熱機試片製備 24 3.3.1 拉伸變形處理 24 3.3.2 退火熱處理 25 3.4 加工變形之ECCI分析 25 3.4.1 EBSD分析 26 3.4.2 極圖與菊池圖模擬 27 3.4.3 ECCI影像分析 27 3.5 退火後之ECCI分析 30 3.5.1 ECCI影像分析 30 3.6 退火過程之ECCI分析 30 3.6.1 ECCI影像分析 30 第四章 實驗結果 32 4.1 加工變形之ECCI分析 32 4.1.1 10%拉伸變形 32 4.1.2 6%拉伸變形 42 4.2 退火後之ECCI分析 46 4.2.1 10%拉伸變形組織 46 4.2.2 退火析出組織 48 4.2.3 退火之差排演化過程 50 第五章 討論 53 5.1 以ECCI鑑定差排之類型 53 5.2 不同加工變形量對差排組織之影響 64 5.3 退火過程對差排組織之影響 66 第六章 結論 70 參考文獻 71

    1. Gutierrez-Urrutia, I., Zaefferer, S. and Raabe, D., Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scripta Materialia, 2009. p. 737.
    2. Gutierrez-Urrutia, I., Zaefferer, S. and Raabe, D., The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010. p. 3552.
    3. Gutierrez-Urrutia, I. and Raabe, D., Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Materialia, 2011. p. 6449.
    4. Weidner, A., Martin, S., Klemm, V., Martin, U. and Biermann, H., Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging. Scripta Materialia, 2011. p. 513.
    5. Gutierrez-Urrutia, I., Zaefferer, S. and Raabe, D., Coupling of Electron Channeling with EBSD: Toward the Quantitative Characterization of Deformation Structures in the SEM. Journal of Metals, 2013. p. 1229.
    6. Zaefferer, S. and Elhami, N. N., Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Materialia, 2014. p. 20.
    7. Weidner, A. and Biermann, H., Case studies on the application of high-resolution electron channelling contrast imaging - investigation of defects and defect arrangements in metallic materials. Philosophical Magazine, 2015. p. 759.
    8. Yamasaki, S., Mitsuhara, M., Ikeda, K., Hata, S. and Nakashima, H., 3D visualization of dislocation arrangement using scanning electron microscope serial sectioning method. Scripta Materialia, 2015. p. 80-83.
    9. Zhang, J. L., Zaefferer, S. and Raabe, D., A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2015. p. 231.
    10. Kuhn, B., Jimenez, C. A., Niewolak, L., Hüttel, T., Beck, T., Hattendorf, H., Singheiser, L. and Quadakkers, W., Effect of Laves phase strengthening on the mechanical properties of high Cr ferritic steels for solid oxide fuel cell interconnect application. Materials Science and Engineering: A, 2011. p. 5888.
    11. Kuhn, B., Talik, M., Niewolak, L., Zurek, J., Hattendorf, H., Ennis, P., Quadakkers, W., Beck, T. and Singheiser, L., Development of high chromium ferritic steels strengthened by intermetallic phases. Materials Science and Engineering: A, 2014. p. 372.
    12. Hsiao, Z. W., Kuhn, B., Chen, D., Singheiser, L., Kuo, J. C. and Lin, D. Y., Characterization of Laves phase in Crofer 22 H stainless steel. Micron, 2015. p. 59.
    13. Coates, D. G., KIKUCHI-LIKE REFLECTION PATTERNS OBTAINED WITH SCANNING ELECTRON MICROSCOPE. Philosophical Magazine, 1967. p. 1179.
    14. Booker, G. R., Shaw, A. M. B., Whelan, M. J. and Hirsch, P. B., SOME COMMENTS ON INTERPRETATION OF KIKUCHI-LIKE REFLECTION PATTERNS OBSERVED BY SCANNING ELEECTRON MICROSCOPY. Philosophical Magazine, 1967. p. 1185.
    15. Sigle, W., Analytical transmission electron microscopy. Annual Review of Materials Research, 2005. p. 239.
    16. Echlin, P., Fiori, C., Goldstein, J., Joy, D. C. and Newbury, D. E., Advanced scanning electron microscopy and X-ray microanalysis. Springer Science & Business Media, 2013.
    17. Williams, D. B., Carter, C. B. and Veyssiere, P., Transmission electron microscopy: a textbook for materials science. MRS Bulletin-Materials Research Society, 1998.
    18. Spencer, J., Humphreys, C. and Hirsch, P., A dynamical theory for the contrast of perfect and imperfect crystals in the scanning electron microscope using backscattered electrons. Philosophical Magazine, 1972. p. 193.
    19. Winkelmann, A., Schröter, B. and Richter, W., Dynamical simulations of zone axis electron channelling patterns of cubic silicon carbide. Ultramicroscopy, 2003. p. 1.
    20. Rossouw, C., Miller, P., Josefsson, T. and Allen, L., Zone-axis back-scattered electron contrast for fast electrons. Philosophical Magazine A, 1994. p. 985.

    下載圖示 校內:2019-08-15公開
    校外:2019-08-15公開
    QR CODE