| 研究生: |
吳庭宜 Wu, Ting-Yi |
|---|---|
| 論文名稱: |
以ECCI技術分析變形與退火過程中Crofer 22 H不鏽鋼中差排組織之演化 Dislocation Structure Analysis of Deformed and Annealed Crofer 22 H Stainless Steel using ECCI Technique |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | ECCI 、Crofer 22 H 、差排組織 、塑性變形 、退火 |
| 外文關鍵詞: | Electron channeling contrast imaging (ECCI), Crofer 22 H,, Dislocation structures, Plastic deformation, Annealing |
| 相關次數: | 點閱:108 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子通道對比影像(ECCI)技術為掃描式電子顯微鏡(SEM)中的一項技術,可直接觀測到在晶體材料上,奈米層級的表面缺陷,例如:差排、疊差及奈米雙晶等。此篇論文使用Crofer 22 H不鏽鋼為實驗材料,藉由ECCI分別觀測不同變形量以及退火處理時間對差排組織之影響。並使用穿透式電子顯微鏡(TEM)中之不可見判定公式(Invisibility criteria),分析差排之滑移系統以及判斷其種類。最後藉由比較不同退火階段之ECCI觀測了到由差排組織到析出物組織之間的演化過程。
Electron channeling contrast imaging (ECCI) is a powerful technique in the scanning electron microscope (SEM), which can be used to observe crystal defects near the surface of bulk materials in nano-scale, such as dislocations, stacking faults and nano-twins. In this study, we used Crofer 22 H stainless steel to observe the microstructure after deformation and annealing in a bcc structure. By the invisibility criteria of transmission electron microscope (TEM), it is possible to analyze the slip system with ECCI taken at different g vectors. By comparing ECCI after different steps of annealing, we observed the evolution of dislocation structure and the precipitation.
1. Gutierrez-Urrutia, I., Zaefferer, S. and Raabe, D., Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scripta Materialia, 2009. p. 737.
2. Gutierrez-Urrutia, I., Zaefferer, S. and Raabe, D., The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2010. p. 3552.
3. Gutierrez-Urrutia, I. and Raabe, D., Dislocation and twin substructure evolution during strain hardening of an Fe-22 wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Materialia, 2011. p. 6449.
4. Weidner, A., Martin, S., Klemm, V., Martin, U. and Biermann, H., Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging. Scripta Materialia, 2011. p. 513.
5. Gutierrez-Urrutia, I., Zaefferer, S. and Raabe, D., Coupling of Electron Channeling with EBSD: Toward the Quantitative Characterization of Deformation Structures in the SEM. Journal of Metals, 2013. p. 1229.
6. Zaefferer, S. and Elhami, N. N., Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Materialia, 2014. p. 20.
7. Weidner, A. and Biermann, H., Case studies on the application of high-resolution electron channelling contrast imaging - investigation of defects and defect arrangements in metallic materials. Philosophical Magazine, 2015. p. 759.
8. Yamasaki, S., Mitsuhara, M., Ikeda, K., Hata, S. and Nakashima, H., 3D visualization of dislocation arrangement using scanning electron microscope serial sectioning method. Scripta Materialia, 2015. p. 80-83.
9. Zhang, J. L., Zaefferer, S. and Raabe, D., A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2015. p. 231.
10. Kuhn, B., Jimenez, C. A., Niewolak, L., Hüttel, T., Beck, T., Hattendorf, H., Singheiser, L. and Quadakkers, W., Effect of Laves phase strengthening on the mechanical properties of high Cr ferritic steels for solid oxide fuel cell interconnect application. Materials Science and Engineering: A, 2011. p. 5888.
11. Kuhn, B., Talik, M., Niewolak, L., Zurek, J., Hattendorf, H., Ennis, P., Quadakkers, W., Beck, T. and Singheiser, L., Development of high chromium ferritic steels strengthened by intermetallic phases. Materials Science and Engineering: A, 2014. p. 372.
12. Hsiao, Z. W., Kuhn, B., Chen, D., Singheiser, L., Kuo, J. C. and Lin, D. Y., Characterization of Laves phase in Crofer 22 H stainless steel. Micron, 2015. p. 59.
13. Coates, D. G., KIKUCHI-LIKE REFLECTION PATTERNS OBTAINED WITH SCANNING ELECTRON MICROSCOPE. Philosophical Magazine, 1967. p. 1179.
14. Booker, G. R., Shaw, A. M. B., Whelan, M. J. and Hirsch, P. B., SOME COMMENTS ON INTERPRETATION OF KIKUCHI-LIKE REFLECTION PATTERNS OBSERVED BY SCANNING ELEECTRON MICROSCOPY. Philosophical Magazine, 1967. p. 1185.
15. Sigle, W., Analytical transmission electron microscopy. Annual Review of Materials Research, 2005. p. 239.
16. Echlin, P., Fiori, C., Goldstein, J., Joy, D. C. and Newbury, D. E., Advanced scanning electron microscopy and X-ray microanalysis. Springer Science & Business Media, 2013.
17. Williams, D. B., Carter, C. B. and Veyssiere, P., Transmission electron microscopy: a textbook for materials science. MRS Bulletin-Materials Research Society, 1998.
18. Spencer, J., Humphreys, C. and Hirsch, P., A dynamical theory for the contrast of perfect and imperfect crystals in the scanning electron microscope using backscattered electrons. Philosophical Magazine, 1972. p. 193.
19. Winkelmann, A., Schröter, B. and Richter, W., Dynamical simulations of zone axis electron channelling patterns of cubic silicon carbide. Ultramicroscopy, 2003. p. 1.
20. Rossouw, C., Miller, P., Josefsson, T. and Allen, L., Zone-axis back-scattered electron contrast for fast electrons. Philosophical Magazine A, 1994. p. 985.