簡易檢索 / 詳目顯示

研究生: 鍾守博
Chung, Shou-Po
論文名稱: 以CFD分析驅逐艦船艏傾角對阻力的影響
CFD Analysis for the Effect of Destroyer Bow Rake Angle on Ship Resistance
指導教授: 吳炳承
Wu, Ping-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 73
中文關鍵詞: OpenFOAM阻力模擬船體造波船艏傾角動態網格
外文關鍵詞: OpenFOAM, resistance simulation, bow rake angle, dynamic mesh
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以流場模擬軟體OpenFOAM 進行三種船艏構型的阻力試驗及2DOF運動模擬,假設為不可壓縮流、求解RANS 配合SST k-ω 模型,目的為降低船模於靜水狀態(Calm water condition)之阻力值並了解船艏形狀對艏部造波及運動的交互影響。研究針對(1)傳統型(2)斧形艏(3)穿浪逆船艏,分別以靜態網格及動態網格進行阻力試驗模擬。靜態網格分為巡航船速及設計船速進行,結果與成功大學拖航水槽之實驗數據比較,評估船體於龍骨水平狀態(Even-keel condition)下於兩種船速之阻力表現及流場變化;動態網格為接續靜態網格的結果,對三種船型進行質量及重心位置的校正,校正船體因網格生成過程中所產生的幾何誤差,再預估巡航船速下阻力值及運動量,比較不同船型在加入姿態變化後的表現。在過程中,兩種模擬亦分別進行驗證與確認(Verification and Validation, V&V)分析,並通過驗證數值收斂性及確認數值的不確定性,確立可信度。
    靜態網格模擬中,在巡航船速下能使傳統型艏阻力誤差在中網格時約1%。
    相較於傳統型艏,發現壓力阻力將隨著後傾角增加而減少且能夠達到總阻力降低的目的,斧型艏約能達到0.63%減阻效果、最佳之穿浪逆船艏為後傾角50 度艏,減阻幅度達8%。但在設計船速時造浪的波高變大許多,可能發生上浪現象導致阻力上升的情形發生,且減阻的表現因船艏外型緣故使壓力阻力不減反增而呈跳動變化,斧形艏減阻效果約0.5%,穿浪逆船艏的部分原最佳之後傾角50 度艏發生上浪現象,在與巡航船速表現綜合評估後建議選擇後傾角30 度。
    動態網格模擬中,姿態變化造成的差異能夠直接反映在阻力表現上,傳統型艏之中網格阻力誤差變為2.7%,而減阻效果中斧型艏能有0.14%減阻效果同時微幅的降低運動量,而後傾角30 度之穿浪逆船艏能夠達到約3.5%減阻效果,但發生縱搖量大幅增加約25%的狀況,這樣的結果可以提供用來做適航性的評估。
    關鍵字:OpenFOAM、阻力模擬、船體造波、船艏傾角、動態網格

    The research uses OpenFoam software to conduct calm water resistance test simulation for three bow types: (1) Flared bow, (2) Axe bow, (3) Inverted bow. The simulation predicts ship hull resistance by static mesh, and the resistance, pitch and heave by dynamic mesh. The resistance value for each bow type satisfies the requirement of verification and validation analysis, and their uncertainty values are obtained.
    Using static mesh, we conduct two different ship speeds: (1) cruising speed, (2) design speed. At cruising speed, the resistance error of flared bow for medium grid is 1%.
    Against the value of the flared bow, the total resistance reduction of the axe bow is 0.63%.
    The inverted bow with 50 degrees continuous rake angles can almost reach 8%. The resistance reduction is caused by the pressure resistance which decreases when the bow rake angle increases. At design speed, the high speed causes the large wave height. The resistance reduction becomes worse for each bow type, even green water on deck occurs.
    Using dynamic mesh, we choose axe bow and the inverted bow with 30 degrees continuous rake angle based on the result in the static mesh study. First, a correction procedure to correct ship mass and longitudinal location of center of gravity is conducted.
    It has been proved that the prediction of ship vertical motions can be improved. The resistance error of the flared bow slightly increases to 2.7%. The total resistance reduction has a good improvement for both axe bow and the inverted bow. The pitch value of the inverted bow increases about 25% against the flared bow’s value.
    Key words: OpenFOAM, resistance simulation, bow rake angle, dynamic mesh

    摘要 I 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XV 符號說明 XVI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 第二章 理論背景 5 2.1 基本假設 5 2.2 統御方程式 5 2.2.1 質量守恆方程式 5 2.2.2 動量守恆方程式 6 2.3 紊流模型 7 2.3.1 RANS 方程式 8 2.3.2 SST k-ω 模型 9 2.4 控制體積法 11 2.5 剛體運動方程式 12 2.6 阻力理論 13 2.7 驗證與確認分析理論 (Verification & Validation) 15 第三章 研究方法 18 3.1 船體模型 18 3.1.1 原船型 20 3.1.2 斧型及不連續傾角穿浪型艏船型 21 3.1.3 連續傾角穿浪型艏船型 23 3.2 計算域及網格 25 3.2.1 計算域設計 25 3.2.2 邊界條件 26 3.2.3 網格設計 28 3.3 縱向重心位置(LCG)校正 32 第四章 結果討論 33 4.1 原船型之驗證與確認結果 34 4.2 靜態網格 36 4.2.1 阻力分析 36 4.2.2 流場分析 41 4.3 動態網格 56 4.3.1 阻力及運動量分析 56 4.3.2 流場分析 59 第五章 結論 62 附錄 64 參考文獻 71

    [1] ITTC-Quality System Manual 7.5-02-06-02, Captive Model Test Procedure.
    ITTC Recommended Procedures and Guidelines. (2017)
    [2] El Moctar, O., Shigunov, V., and Zorn, T., Duisburg Test Case: Post-Panamax
    Container Ship for Benchmarking, Journal of Ship Technology Research,
    59:50-65. (2012)
    [3] L. Larsson, F. Stern, V. Bertram, Benchmarking of computational fluid
    dynamics for ship flows: the Gothenburg 2000 workshop, Journal of Ship
    Research, 47 (1), 63–81. (2003)
    [4] Larsson, L., Stern, F., Visonneau, M., Hino, T., Hirata, N., & Kim, J. Tokyo
    2015: A workshop on CFD in ship hydrodynamics, Workshop Proceedings,
    Tokyo, Dec (pp. 2-4). (2015)
    [5] H Yoon, CD Simonsen, L Benedetti, J Longo, Y Toda, F Stern, Benchmark
    CFD validation data for surface combatant 5415 in PMM maneuvers–Part I:
    Force/moment/motion measurements, Ocean engineering 109, 705-734.
    (2015)
    [6] Y. Ahmed & C. Guedes Soares, Simulation of the flow around the surface
    combatant DTMB model 5415 at different speeds, 13th Congress of Intl.
    Maritime Assoc. of Mediterranean IMAM 2009, Istanbul, Turkey, 12-15 Oct.
    (2009)
    [7] Z Shen, R Korpus, Numerical simulations of ship self-propulsion and
    maneuvering using dynamic overset grids in OpenFOAM, Tokyo 2015 A
    Workshop on CFD in Ship Hydrodynamics, Tokyo, Japan (2015)
    [8] Yu J.W., Lee C.M., Lee I., Choi J.E., Bow hull-form optimization in waves
    of a 66,000 DWT bulk carrier, Int. J. Nav. Archit.Ocean Eng. 9, 499–508.
    72
    (2017)
    [9] Hirota, K., Matsumoto, K., Takagishi, K., Yamasaki, K., Orihara, H., &
    Yoshida, H., Development of bow shape to reduce the added resistance due
    to waves and verification of full scale measurement. In: Proceedings of the
    First International Conference on Marine Research and Transportation
    (ICMRT05), Ischia, Italy, September 19-21, pp. 63-70. (2005)
    [10] Sadat-Hosseini, H., Carrica, P., Stern, F., Umeda, N., Hashimoto, H.,
    Yamamura, S., & Mastuda, A.Comparison CFD and system-based methods
    and EFD for surf-riding, periodic motion, and broaching of ONR
    tumblehome. 10th International Conference on Stability of Ships and Ocean
    Vehicles, pp.317-329. (2009)
    [11] White, J.K. and Brizzolara, S., Effect of Inverted Bow on the Hydrodynamic
    Performance of Navy Combatant Hull Forms. (2015)
    [12] 閻家維,逆船舷艏船舶阻力數值分析,國立高雄科技大學造船及海洋工
    程系碩士論文,高雄市(2019)
    [13] 廖偉智,在動態網格船模阻力試驗中改進垂直運動的預測,國立成功大
    學系統及船舶機電工程學系碩士論文,台南市(2020)
    [14] 吳炳承,廖偉智,CFD 船模阻力試驗中改善下沉量與俯仰角的預測,第
    33 屆中國造船暨輪機工程研討會暨科技部成果發表會(2020)
    [15] Menter F.R., “Two-equation eddy-viscosity turbulence models for
    engineering applications”. AIAA-Journal,32(8), pp.269-289. (1994)
    [16] Katsutaka Okamori, Master Course for Fluid Simulation Analysis of Multiphase
    Flows by Oka-san: 3. VOF (volume of fluid) method. Retrieved May
    2, (2019), from https://www.cradle-cfd.com/media/column/a105
    [17] 國立成功大學水槽船舶實驗技術手冊
    73
    [18] Morrall, A., 1957 ITTC model ship correlation line values of frictional
    resistance coefficient, National Physical Laboratory, NPL, Ship Division,
    Ship Report 142 (1970)
    [19] Xing, T., & Stern, F., Factors of safety for Richardson extrapolation, Journal
    of Fluids Engineering, 132(6). (2010)
    [20] ITTC-Quality Manual 7.5-03-01-01, CFD General. Uncertainty Analysis in
    CFD verification and Validation Methodology and Procedures. ITTC
    Recommended Procedures and Guidelines. (2017)
    [21] ITTC-Quality Manual 7.5-03-02-03, CFD General. Practical Guidelines for
    Ship CFD Applications. ITTC Recommended Procedures and Guidelines.
    (2011)

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE