| 研究生: |
劉穎潔 Liou, Ying-Jie |
|---|---|
| 論文名稱: |
地層滲透率非均質性對二氧化碳封存注儲能力影響之研究 Effect of Permeability Heterogeneity on the Injectivity of Carbon Dioxide Sequestration |
| 指導教授: |
謝秉志
Hsieh, Bieng-Zih |
| 共同指導教授: |
林再興
Lin, Zsay-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 平均滲透率估算 、滲透率異向性 、注儲能力 、二氧化碳封存 |
| 外文關鍵詞: | average permeability, anisotropy, injectivity index, CO2 sequestration |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的是研究一個簡化的方法,將複雜滲透率分佈(非均質)的地層簡化為某一個具代表性的平均滲透率均質之地層,並利用數值模擬法計算複雜滲透率分佈的地層與簡化滲透率的地層於二氧化碳注儲期間之井底流壓變化,推估其注儲能力並進行比對。
本研究中之研究步驟為:(1)單相(水層注水)之滲透率均質地層的單層模式與多層模式之壓力比對;(2)單相非均質地層之平均滲透率估算研究;(3)兩相(油層注水)均質地層之單層模式與多層模式之壓力比對;(4)兩相(油層注水)非均質地層之平均滲透率估算研究;(5)兩相(水層注二氧化碳)均質地層之單層模式與多層模式研究;(6)兩相(水層注二氧化碳)非均質地層之平均滲透率估算研究;(7)案例研究。
由本研究所獲得之結果可知:(1) 在水層注水時不論滲透率為均質或非均質(包括滲透率均向及異向),皆可將多層模式地層利用平均滲透率簡化為單層模式地層,且壓力比對結果一樣。而在油層中注水時,同樣可利用平均滲透率的方式將多層地層以單層地層表示,其壓力的比對結果也相同。另外在水層注二氧化碳時,在將多層模式轉化為單層模式時需考慮重力因素所產生之壓力差,但若以平均滲透率表示的多層模式地層與滲透率分佈不同之地層比對時,壓力的比對結果也會相同。
(2) 以現場地層的滲透率資料進行平均滲透率之估算時,若為定注入率注入時,簡化滲透率模式與原始滲透率分佈的地層模式之井底流壓比對結果相近;若為定壓力注入時,注入率的比對結果也相近。因此,以平均滲透率所表示的地層所計算出之二氧化碳注儲能力,可做為二氧化碳封存於滲透率分佈複雜之地層時,其二氧化碳注儲能力的推估。
由以上研究可證明,利用平均滲透率的計算可簡化複雜滲透率分佈之地層,並可提供二氧化碳注儲工程上之參考。
The purpose of this study is to study a simplified method to make the heterogeneous reservoir have a representative average permeability. The bottom hole pressure of permeability heterogeneity and homogeneity will be compared by using numerical method, then the injectivity index of carbon dioxide sequestration can be estimated.
The major works in this study include: (1) The bottom hole pressure validation of homogeneous reservoir from one-layer and multi-layer models, for the case of water injection into an aquifer; (2) The study of effect of permeability heterogeneity on the pressure and injectivity calculation for the case of water injection into an aquifer; (3) The bottom hole pressure validation of homogeneous reservoir from one-layer and multi-layer models, for the case of water injection into an oil reservoir; (4) The study of effect of permeability heterogeneity on the pressure and injectivity calculation, for the case of water injection into an oil reservoir; (5) The bottom hole pressure validation of homogeneous reservoir from one-layer and multi-layer models, for the case of CO2 injection into an aquifer; (6) The study of effect of permeability heterogeneity on the pressure and injectivity calculation, for the case of CO2 injection into an aquifer; (7) A case study of injectivity estimation of CO2 sequestration.
The major results obtained from this study are: (1) the equation of average permeability estimation can be used to simplify the complex permeability distribution system (i.e., heterogeneity reservoir) for injectivity calculation. In the cases of single-phase, water-flooding and gas flooding, the multi-layer heterogeneity reservoir can be simplified to homogeneous reservoir with a representative average permeability reservoir for pressure and injectivity calculation. (2) In the case study, the equation of average permeability estimation is used for a heterogeneity aquifer of CO2 sequestration in NW Taiwan to calculate the pressure and injectivity of CO2 injection well. Both cases of constant rate injection and constant pressure injection are been conducted. The pressure and injectivity calculation of the simplified homogeneous reservoir with the representative average permeability is identical to that of the heterogeneous reservoir.
1. Akaku, K., “Numerical Simulation of CO2 Storage in Aquifers without Trapping Structures,” Paper (IPTC 12304) presented at the International Petroleum Technology Conference held in Kuala Lumpur, Malaysia, December 2008.
2. Bachu, S., “Sequestration of CO2 in geological media: criteria and
approach for site selection in response to climate change, ” Energy
Convers. Manag. 41, 953–970, 2000.
3. Bachu, S., “ Sequestration of CO2 in geological media: road map
for site selection using the transform of the geological space into
the CO2 phase space,” Energy Convers. Manag. 43, 87–102, 2002.
4. Buckley, S.E. and Leverett, M.C.: “Mechanism of Fluid Displacement in Sands,” Society of Petroleum Engineers Journal,” 107-116, February 1942.
5. Burton, M., Kumar, N. and Bryant, S.L.: “CO2 Injectivity Into Brine Aquifers: Why Relative Permeability Matters As Much As Absolute Permeability,” Energy Procedia, 1: 3091-3098, 2009.
6. Chang, Y., Coats, B., Nolen, J., “A compositional model for CO2
floods including CO2 solubility in water,” Paper SPE 35164,
Presented at the 1996 SPE Permian Basin Oil and Gas Recovery
Conference held in Midland, Texas, U.S.A., March 27–29, 1996.
7. Darcy, H., “Les Fontaines Publiques de la Ville de Dijon,” Victor Dalmint, Paris, 1856.
8. Doughty, C., Preuss, K., “Modeling supercritical carbon dioxide
injection in heterogeneous porousmedia,” VadoseZone J. 3, 837–847, 2004.
9. Durlofsky, L.J., Behrens, R.A., Jones, R.C., Bernath, A., “Scale
up of heterogeneous three dimensional reservoir descriptions,” SPE
J. 1 (3), 313–326, 1996.
10. Earlougher, R.C., Jr., “Advances in Well Test Analysis,” Monograph voi.5, SPE, AIME, Dallas, 1977.
11. Elraies, K.A. and Yunan, M.H.: “Investigation of Water Breakthrough Time in Non-communicating Layered Reservoir,” Journal of Chemical and Natural Resources Engineering, 3: 12-18, March 2008.
12. Flett, M., Gurton, R., Taggart, I., “Heterogeneous saline
formations: long term benefits for geo-sequestration of greenhouse
gases,” Paper 86, Presented at the Seventh International Conference
on Greenhouse Gas Control technologies (GHGT-7). Peer
Reviewed Volume. Vancouver, Canada. September 5–9, 2004.
13. Flett, M., Gurton, R., Weir, G., “Heterogeneous saline formations for carbondioxide disposal: impact of varying heterogeneity on containment and trapping,” J. Petrol. Sci. Eng. 57, 106–118, 2007.
14. Hamon, G., Suzanne, K., Billiotte, J., Trocme, V., “Field-wide
variations of trapped gas saturation in heterogeneous sandstone
reservoirs,” Paper SPE 71524 Presented at the 2001 SPE Annual
Technical Conference and Exhibition, New Orleans, Louisiana,
USA, 30 Sept.–3 Oct, 2001.
15. IEA, “CO2 Capture and Storage- A Key carbon abatement option,” 2008.
16. Jensen, Jerry L., Hinkley, David V., Lake, Larry. “A Statistical Study of Reservoir Permeability: Distributions, Correlations, and Averages,” SPE Formation Evaluation 1987.
17. King Hubbert, M.., “Darcy’s Law and the Field Equations of the Flow of Underground Fluids, " Trans., AIME, 207:222-239, 1956.
18. Law, J., "Statistical Approach to the Interstitial Heterogeneity of Sand
Reservoirs," Trans., AIME 155, 202-22, 1944.
19. Law, D., Bachu, S., “Hydrogeological and numerical analysis of
CO2 disposal in deep aquifers in the Alberta sedimentary basin,”
Energy Convers. Manag. 37 (6–8), 1167–1174, 1996.
20. Lee, J., “Well Testing,” Society of Petroleum Engineers of AIME, New Work, 1982.
21. Lindeberg, E., “Escape of CO2 from aquifers,” Energy Convers.
Manag. 38, S235–S240 (Suppl), 1997.
22. Noh, M, Lake, L.W., Bryant, S.L., Araque-Martinez, A., “Implications of Coupling Fractional Flow and Geochemistry for CO2 Injection in Aquifers,” Society of Petroleum Engineers Journal, 406-414, March 2007.
23. Omar Sigurdsson,Gudmundur S. Bodvarsson and Valgardur Stefansson, “Nonisothermal Injectivity Index Can Infer Well Productivity And Reservoir Transmissivity,” Proceedings Ninth Workshop Geothermal Reservoir Engineering Stanford University, Stanford, California December 1983 SGP-TR-74.
24. Preuss, K., Xu, T., Apps, J., Garcia, J., “Numerical modeling of
aquifer disposal of CO2,” SPE J. 49, 2003.
25. T. Takasawa, T. Kawamura, N. Arihara, “Effects of CO2 Density and Solubility on Storage Behavior in Saline Aquifers,” Society of Petroleum Engineers, 2010.
26. Thomas, G. W., “Principles of hydrocarbon Reservoir Simulation”, 1982.
27. Van der Meer, L., “The CO2 storage efficiency of aquifers,”
Energy Convers. Manag. 36 (6–9), 513–518, 1995.
28. Van der Meer, L., “Computer modelling of underground CO2
storage,” Energy Convers. Manag. 37 (6–8), 1155–1160, 1996.
29. W. Sifuentes, M. J. Blunt, M. A. Giddins, “Modeling CO2 Storage in Aquifer: Assessing the Key Contributors to Uncertainty,” Society of Petroleum Engineers,2009.
30. W., Kumar, A., Noh, M., Pope, G., Sepehrnoori, K., Bryant, S., Lake, L., “Reservoir simulation of CO2 storage in deep saline aquifers,”
SPE Paper 89343, Presented at the 2004 SPE/DOE Fourteenth
Symposium on Improved Oil Recovery. Tulsa, Oklahoma, U.S.A.
17–21 April, 2004.
31. Willhite, G.P.: “Water Flooding,” Society of Petroleum Engineers, 1986.
32. Xu, T., Apps, J., Pruess, K., “Numerical simulation of CO2 disposal
by mineral trapping in deep aquifers,” Appl. Geochem. 19, 917–936, 2004.
33. Yuko Kawata, Hiroshi Ohkuma, Satoru Yukoi, Shigetaka Nakanish, Kazuyuki Yoneyama, Tsutomu Haashimoto, “Sensitivity Analysis of CO2 Migration in Deep Saline Aquifer of Ise Bay, Using Heterogeneous and Homogeneous 2D Models Based on Depositional Facies Analysis,” Energy Procedia,Pages 2693-2700, 2009.
34. 楊耿明,行政院國家科學委員會,台灣二氧化碳地質封存研究子計畫四,2011。
35. 工業技術研究院,經濟部能源科技研究發展計畫-二氧化碳再利用技術及地質封存潛能評估計畫(1/3) , 2007。