簡易檢索 / 詳目顯示

研究生: 蔡介偉
Tsai, Chieh-Wei
論文名稱: 織狀壓電獵能器於微小波浪之設計與評估
Design and Evaluation of a Novel Knitted Piezoelectric Energy Harvester for Tiny Ocean Waves
指導教授: 沈聖智
Shen, Sheng-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 72
中文關鍵詞: 織狀壓電薄膜獵能器波浪能
外文關鍵詞: Knitted piezoelectric films, energy harvester, wave energy
相關次數: 點閱:91下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文設計一新型織狀壓電薄膜獵能器用以獵取微小波浪能,此獵能器被設計於使用於小振幅之波浪,且此獵能器可藉由懸掛彈簧之不倒翁型敲擊結構將低頻的波浪力轉換為較高頻的振動力。此織狀壓電薄膜獵能器包含三元件:織狀PVDF薄膜、懸掛彈簧之不倒翁型敲擊結構及拍打裝置。敲擊結構包含三種設計:圓柱型、半膠囊型與不倒翁型,根據模擬結果顯示,不倒翁型之敲擊結構比圓柱形和半膠囊型能施加更大的應力於壓電薄膜上,進而產生更多電能,另一方面,壓電薄膜之支撐材料長度並不會顯著影響此獵能器的獵能效率。此新型織狀壓電薄膜獵能器在1.5cm、1.75cm、 2cm振幅下可分別產生0.31mW、0.48mW、0.67mW的能量。織狀PVDF結構產生之電能約為多層PVDF結構之2.6-2.8倍。當PZT薄膜亦使用織狀結構編織時,預估亦可比一般PZT薄膜結構得到2.6-2.8倍之電能。

    The thesis presents a novel knitted PVDF films energy harvester with knocking structure for tiny ocean waves. This design is used in low amplitude wave condition and it can transform the low frequency of waves into higher frequency vibrations using a knocking structure with a spring. This knitted PVDF films energy harvester contains three units which are knitted PVDF films, beating element and a knocking structure with a spring. Knocking structure is designed in three kinds of shapes which are cylinder shape, half-capsule shape and tumbler shape. For the simulation results, the length of supporting layers does not affect the harvesting efficiency for this structure obviously. In addition, knocking structure in tumbler shape can add more stress in piezoelectric materials than with cylinder shape or half-capsule shape. The novel knitted PVDF films energy harvester with knocking structure can generate 0.31mW, 0.48mW, 0.67mW in 1.5cm, 1.75cm, 2cm amplitude of waves respectively. The knitted PVDF films energy harvester is 2.6-2.8 times greater than the multi-PVDF films type in generating energy. When weaving PZT films to a knit, this energy harvester can transform more wave energy into usable electric energy.

    中文摘要 I Abstract II Acknowledgements III Table of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1-1 Preface and motive 1 1-2 Thesis structure 3 Chapter 2 Review 6 2-1 Piezoelectric energy harvester 6 2-2 Piezoelectric energy harvester for ocean wave energy 9 Chapter 3 Design and Analysis 14 3-1 Theory of Piezoelectricity 14 3-1-1 Direct piezoelectric effect 14 3-1-2 Converse piezoelectric effect 17 3-2 Analysis of Piezoelectric Energy Harvester 19 3-2-1 Analysis of beating element 19 3-2-2 Analysis of knocking structure 20 3-2-3 Analysis of piezoelectric materials 23 Chapter 4 Fabrication and Simulation 24 4-1 Piezoelectric energy harvester 24 4-1-1 Piezoelectric films 24 4-1-2 Knocking structure with a spring 28 4-1-3 Beating element 31 4-2 Rectifier circuit 31 4-2-1 Bridge rectifier 32 4-2-2 Full-wave voltage-doubling rectifier 33 4-2-3 Precision full-wave rectifier 34 4-3 Simulation 35 4-3-1 Different shape of knocking structure 35 4-3-2 Different length of supporting layers for PVDF films 39 Chapter 5 Experiment and Discussion 43 5-1 Experiment of vibrator 43 5-1-1 Experimental methods 43 5-1-2 Results and Discussion 46 5-2 Experiment in wave maker tank 53 5-2-1 Experimental methods 53 5-2-2 Results and Discussion 56 Chapter 6 Conclusion 61 6-1 Conclusion 61 6-2 Future Prospects 62 Reference 63 附錄A 中文延伸摘要 67

    [1]. http://www.oceanenergycouncil.com/ocean-energy/wave-energy/
    [2]. S. Roundy, Eli S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, Jan M. Rabaey, Paul K. Wright, V. Sundararajan, “Improving Power Output for Vibration-Based Energy Scavengers,” IEEE Pervasive Computing, Vol. 4, pp. 28-36, 2005.
    [3]. S. Roundy, P. K. Wright, J. Rabaey, “A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes,” Computer Communications, Vol. 26, pp. 1131-1144, 2003.
    [4]. 連永順、張恆文, 「台灣波浪發電浮體載台構型適宜性分析」,第33屆海洋工程研討會論文,2011。
    [5]. S. Chalasani, J. M. Conrad, “A Survey of Energy Harvesting Sources for Embedded Systems,” IEEE SoutheastCon, pp. 442-447, 2008.
    [6]. M. Pereyma, “Overview of the Modern State of the Vibration Energy Harvesting Devices,” Proceeding of MEMSTECH , pp.107-112, 2007.
    [7]. M. Umeda, K. Nakamura, S. Ueha, “Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator,” Japanese Journal of Applied Physics, Vol. 35, pp. 3267-3273, 1996.
    [8]. N. W. Hagood, D. C. Roberts, L. Saggere, K. S. Chen, J. A. Carretero, H. Li, R. Mlcak, S. Pulitzer, M. A. Schmidt, S. Mark Spearing, Y. H. Su, “Micro hydraulic transducer technology for actuation and power generation,” Smart Structures and Materials 2000 – Smart Structures and Integrated Systems, Vol. 3985, pp. 680-688, 2000.
    [9]. C. K. J. Kymissis, J. Paradiso, N. Gershenfeld, “Parasitic Power Harvesting in Shoes,” Proceeding of the Second IEEE International Conference on Wearable Computing, pp. 132-139, 1998.
    [10]. M. Lee, C. Y. Chen, S. Wang, S. N. Cha, Y. J. Park, L. M. Kim, L. J. Chou, Z. L. Wang, “A Hybrid Piezoelectric Structure for Wearable Nanogenerators,” Advanced Materials, Vol. 24, No. 13, pp. 1759-1764, 2012.
    [11]. East Japan Railway Company, “Demonstration Experiment of the “Power-Generating Floor” at Tokyo Station,” 2008.
    [12]. J. R. Burns, “Ocean Wave Energy Conversion Using Piezoelectric Material Members.” US Patent 4685296, 1987.
    [13]. H. Mutsuda, K. Kawakami, M. Hirata, Y. Doi, Y. Tanaka, “Study on Wave Power Generator Using Flexible Piezoelectric Device” Proceeding of the ASME 2011 30st International Conference on Ocean, Offshore and Arctic Engineering, Vol. 5, No. OMAE2011-49071, pp. 267-273, 2011.
    [14]. Y. Tanaka, K. Matsumura, H. Mutsuda, “Study on Flexible Power Generation Device Using Piezoelectric Film,” Journal of Energy and Power Energineering, Vol. 6, No. 3, pp.353-360, 2012.
    [15]. Y. Tanaka, K. Matsumura, H. Mutsuda, “An Experimental Study of Power Generation and Storage Using a Flexible Piezoelectric Device,” International Journal of Applied Electromagnetics and Mechanics, Vol. 39, No. 1-4, pp. 603-608, 2012.
    [16]. H. Mutsuda, R. Watanabe, M. Hirata, Y. Doi, Y. Tanaka, “Elastic Floating Unit with Piezoelectric Device for Harvesting Ocean Wave Energy,” Proceeding of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Vol. 7, No. OMAE2012-83318, pp. 233-240, 2012.
    [17]. R. Murray, J. Rastegar, “Novel Two –Stage Piezoelectric-Based Ocean Wave Energy Harvesters for Moored or Unmoored Buoys,” Proceeding of SPIE – Active and Passive Smart Structure and Integrated Systems, Vol. 7288, pp. E1-E12, 2009.
    [18]. N. Okada, H. Fujimoto, S. Yabe, M. Murai, “Experiments on floating wave-power generation using piezoelectric elements and pendulums in the water tank,” IEEE OCEANS, pp. 1-8, 2012.
    [19]. 周卓明,「壓電力學」,全華圖書,台北,頁1.8-1.27、2.2-2.18,2003。
    [20]. 黃俊成,「對稱型壓電元件於多軸度微型致動器之研製」,國立成功大學碩士論文,台南,頁20-24,2009。
    [21]. 蔡士郁,「壓電能量擷取器分析及於無線發射器之應用」,國立雲林科技大學碩士論文,雲林,頁11-15,2011。
    [22]. 羅文濱,「新型軟性壓電式觸覺感測器結構設計與製作」,南臺科技大學碩士論文,台南,頁8-12,2007。
    [23]. http://www.meas-spec.com/
    [24]. http://piceramic.com/
    [25]. 郭豪翔,「結合撓性結構與音圈馬達之振動獵能與控制研究」,國立成功大學碩士論文,台南,頁80-83,2013。

    下載圖示 校內:2019-08-15公開
    校外:2019-08-15公開
    QR CODE