| 研究生: |
林育儒 Lin, Yu-Lu |
|---|---|
| 論文名稱: |
液相氧化法在磷化銦鎵上的研究與應用 Liquid Phase Oxidation Technique for InGaP and Its Application |
| 指導教授: |
洪茂峰
Houng, Mau-Phon 嚴考豐 Yen, Kao-Fong 王永和 Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 液相氧化法 、InGaP 、InPO4 |
| 外文關鍵詞: | InPO4, InGaP liquid, oxidation |
| 相關次數: | 點閱:119 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如何在磷化銦鎵上成長自然的氧化層,一直未見良好的方法,若以硝酸:氨水:純水這套溶液系統運用在砷化鎵上,在成長速率和電性方面都得到不錯的結果,若是將此法運用至磷化銦鎵上,氧化速率卻只有~12Å/h,因此硝酸:氨水:純水這套溶液系統直接運用在磷化銦鎵上仍有很大的改善空間。
而以液相化學輔助氧化法的觀點:運用蝕刻和氧化沈積機制,調整pH值來留下氧化物;使用鹽酸:硝酸:純水這套溶液系統於液相氧化法上,運用在氧化磷化銦鎵上,得到比液相化學輔助氧化法更好的成長速率 (~62.5 Å/h),約提升了5倍。
而在化學成分的分析,從X光光電子能譜分析,所生成的氧化層主要組成為InPO4,而良好的絕緣體的條件是需要有大的能隙,而InPO4的能隙為4.5eV,因此在作為良好的隔離層方面是很有潛力的。
最後是將所成長的氧化層用在磷化銦鎵異質接面元件上。
It isn’t success for InGaP to grow nature oxide. The growing rate and electrical properties are satisfying when liquid oxidation(HNO3:NH4OH:H2O) is applied to GaAs. However, the application to InGaP causes the oxidation rate not more than ~12Å/h, which proves the impracticability of liquid oxidation of InGaP.
From the viewpoint of liquid oxidation, adjustment of the pHi makes the oxide is leaved through the etching oxidation mechanism. Using this liquid system-HCl:HNO3:H2O on liquid oxidation and applying it to the oxidized InGaP brings a better growing rate (~62.5 Å/h) than that of the liquid system- HNO3:NH4OH:H2O. The rate rise 5 times higher.
As for the analysis of chemical element, the main structure of the oxidized layer is found to be InPO4 through InGaP. Because a big energy gap is required to be a better insulator, InPO4, whose energy gap is 4.5eV, is quite potential to be the ideal insulator.
Finally, the oxidized layer is applied to the device of InGaP.
[1] Yue-Ming Hsin , “ Improved HBT Performance by Base Width Reduction and Selective Extrinsic Base Regrowth “ 加州大學博士論文(1997)
[2] G..Hollinger, E. Bergignat, J. Joseph, and Y. Robach, J. Vac. Sci. Technol. A3, 2082(1985)
[3] Tomotsu Hashizume and Toshiya Saitoh, Appl. Phys. Lett. 78, 2318 (2001).
[4] G..Hollinger, J. Joseph, Y. Robach, E. Bergignat, B. Commere, P. Viktorovitch and M. Froment, J. Vac. Sci. Technol. B5(4), 1108(1987)
[5] W. Shockley, U.S. patent no.2569347, and H. Kroemer, Proc. “ Theory of Wide-gap emitter for Transistor, “ IRE, vol. 45, 1957, pp. 1535
[6] N. HAYAMA and K. HONJO, IEEE Electron Dev. Lett., 1990, 11, pp.388-390