| 研究生: |
席喬力 Simamora, Anggiat Jogi |
|---|---|
| 論文名稱: |
光催化海水產氫 Photocatalytic Generation of H2 from Seawater |
| 指導教授: |
王鴻博
Wang, Hong Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 光催化 、氫 、奈米二氧化鈦 、XANES 、EXAFS |
| 外文關鍵詞: | photocatalysis, hydrgogen, nanosize TiO2, XANES, EXAFS |
| 相關次數: | 點閱:93 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究重點是光觸媒裂解海水產氫,為促進奈米TiO2(nanotubes)的活性基,添加2.5~5.0%氧化銅(CuO)於TiO2表面。從X-ray absorption near edge structure (XANES)圖譜分析發現,TiO2表面之氧化銅(CuO/奈米TiO2)以分子簇(clusters)為主。CuO/TNT光催化裂解海水的效率分別為TNT及奈米TiO2之2.84及64倍。2.5% CuO/奈米TiO2¬之光催化裂解海水比奈米TiO2高7.8倍。
值得注意的是在10 ppm的亞甲基藍(MB)時,2.5% CuO/奈米TiO2對光催化裂解水與海水之活性也很高,在5小時的紫外光-可見光(UV-Vis)照射下,水中86%的MB可被光催化降解,而且產氫效率可達 25 µmol/g 觸媒;海水中 MB的降解效率則可達99%,但產氫效率僅15.7 µmol/g 觸媒。
The main objective of this study was to prepare effective photocatalysts for splitting of seawater to yield H2. To enhance activity of the nanosize and nanotube TiO2, 2.5-5.0% of CuO was supported on TiO2. By X-ray absorption near edge structure (XANES) spectroscopy, it seems that CuO clusters are supported on nanosize TiO2 (CuO/nano TiO2) which can photocatalyze splitting of water and seawater. The average effectiveness of the 5%CuO/TNT for photocatalytic splitting of water is greater than those of TNT and nanosize TiO2 by 2.84 and 64 times, respectively. The photocatalyst (2.5%CuO/nano TiO2) has greater activities in photocatalytic splitting of water and seawater than nanosize TiO2 by 9.9 and 7.8 times, respectively.
Interestingly, the 2.5%CuO/nano TiO2 photocatalyst is also very active for photocatalytic splitting of water and seawater in the presence of methylene blue (MB) (10 ppm). It is found that 86% of MB in water can be degraded photocatalytically in a five-hour irradiation of the UV-Vis light, whereas H2 generation is 25 µmol/g cat. About 99% of MB can be degraded in seawater. The H2 generation is 15.7 µmol/g cat.
Addamo M., Augugliaro V., Garcı´a-Lo´pez E., Loddo V., Marcı` G., Palmisano L. (2005) Oxidation of oxalate ion in aqueous suspensions of TiO2 by photocatalysis and ozonation. Catalysis Today 107:612–618.
Akkerman I., Janssen M., Rocha J., Wijffels R.H. (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy 27:1195-1208.
Amao Y., Tomonou Y., Okura I. (2003) Highly efficient photochemical hydrogen production system using zinc porphyrin and hydrogenase in CTAB micellar system. Solar Energy Materials and Solar Cells 79:103-111.
Antonopoulou G., Gavala H.N., Skiadas I.V., Angelopoulos K., Lyberatos G. (2008) Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology 99:110-119.
Armor J.N. (1999) The multiple roles for catalysis in the production of H2. Applied Catalysis A: General 176:159-176.
Bae S.W., Ji S.M., Hong S.J., Jang J.W., Lee J.S. (2009) Photocatalytic overall water splitting with dual-bed system under visible light irradiation. International Journal of Hydrogen Energy 34:3243-3249.
Balat M. (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy 33:4013-4029.
Bamwenda G.R., Tsubota S., Nakamura T., Haruta M. (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. Journal of Photochemistry and Photobiology A: Chemistry 89:177-189.
Bandara J., Udawatta C.P.K., Rajapakse C.S.K. (2005) Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemical & Photobiological Sciences 4:857-861.
Barelli L., Bidini G., Gallorini F., Servili S. (2008) Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review. Energy 33:554-570.
Bavykin D.V., Walsh F.C. (2009) Elongated titanate nanostructures and their applications. Eur. J. Inorg. Chem:977–997.
Browna M.A., Vitob S.C.D. (1993) Predicting azo dye toxicity Critical Reviews in Environmental Science and Technology 23:249-324.
Cheekatamarla P.K., Lane A.M. (2005) Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells: I. Activity tests and sulfur poisoning. Journal of Power Sources 152:256-263.
Chen X., Mao S.S. (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and application. Chem. Rev 107:2891−2959.
Chen X., Shen S., Guo L., Mao S.S. (2010) Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews 110:6503-6570.
Cheng H., Scott K., Ramshaw C. (2002) Intensification of water electrolysis in a centrifugal field. Journal of The Electrochemical Society 149:172-177.
Choi W., Termin A., Hoffmann M.R. (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry 98:13669-13679.
Crawford S., Thimsen E., Biswas P. (2009) Impact of different electrolytes on photocatalytic water splitting. Journal of The Electrochemical Society 156:346-351.
Doizi D., Dauvois V., Roujou J.L., Delanne V., Fauvet P., Larousse B., Hercher O., Carles P., Moulin C., Hartmann J.M. (2007) Total and partial pressure measurements for the sulphur-iodine thermochemical cycle. International Journal of Hydrogen Energy 32:1183-1191.
Encinar J.M., Beltrán F.J., Ramiro A., González J.F. (1998) Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Processing Technology 55:219-233.
Farges F., Brown G.E., Rehr J.J. (1997) Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Physical Review B 56:1809-1819.
Freni S., Calogero G., Cavallaro S. (2000) Hydrogen production from methane through catalytic partial oxidation reactions. Journal of Power Sources 87:28-38.
Fujishima A., Honda K. (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37-38.
Galinska A., Walendziewski J. (2005) Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy & Fuels 19:1143-1147.
Gong D., Grimes C.A., Varghese O.K. (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16:3331-3334.
Hairston D. (1996) Hail hydrogen. Chem. Eng 103:59-62.
Hanley T.L., Luca V., Pickering I., Howe R.F. (2002) Structure of titania sol−gel films: A study by X-Ray absorption spectroscopy. The Journal of Physical Chemistry B 106:1153-1160.
Higashi M., Abe R., Ishikawa A., Takata T., Ohtani B., Domen K. (2008) Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (lambda<500 nm). Chemistry Letters 37:138-139.
Hirano K., Suzuki E., Ishikawa A., Moroi T., Shiroishi H., Kaneko M. (2000) Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. Journal of Photochemistry and Photobiology A: Chemistry 136:157-161.
Hoffmann M.R., Martin S.T., Choi W., Bahnemannt D.W. (1995) Environmental applications of semiconductor photocatalysis. Chem. Rev 95:69-96.
Houas A., Lachheb H., Ksibi M., Elaloui E., Guillard C., Herrmann J.-M. (2001) Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B: Environmental 31:145–157.
Hoyer P. (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411-1413.
Hu Y.H., Ruckenstein E. (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming Advances in Catalysis 48:297-345.
Huang H.-L. (2007) Enrichment and recycling of nanosize copper and zinc pollutants. Disertation for Doctor of Philosophy Department of Environmental Engineering National Cheng Kung University.
Hussain M.M., Dincer I., Li X. (2007) A preliminary life cycle assessment of PEM fuel cell powered automobiles. Applied Thermal Engineering 27:2294-2299.
Ikeda S., Hara M., Kondo J.N., Domen K., Takahashi H., Okubo T., Kakihana M. (1998) Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water. Chemistry of Materials 10:72-77.
Ito S., Thampi K.R., Comte P., Liska P., Gratzel M. (2005) Highly active meso-microporous TaON photocatalyst driven by visible light. Chemical Communications 2:268-270.
Ji S.M., Jun H., Jang J.S., Hyo Chang Son, Borse P.H., Lee J.S. (2007) Photocatalytic hydrogen production from natural seawater. Journal of Photochemistry and Photobiology A: Chemistry 189:141–144.
Jin H., Xu Y., Lin R., Han W. (2008) A proposal for a novel multi-functional energy system for the production of hydrogen and power. International Journal of Hydrogen Energy 33:9-19.
Jin Z., Zhang X., Li Y., Li S., Lu G. (2007) 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications 8:1267-1273.
Kaneko H., Gokon N., Hasegawa N., Tamaura Y. (2005) Solar thermochemical process for hydrogen production using ferrites. Energy 30:2171-2178.
Kang K.-S., Kim C.-H., Park C.-S., Kim J.-W. (2007) Hydrogen reduction and subsequent water splitting of Zr-added CeO2. J. Ind. Eng. Chem 13:657-663.
Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. (1998) Formation of titanium oxide nanotube. Langmuir 14:3160-3163.
Kato H., Kudo A. (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. The Journal of Physical Chemistry B 106:5029-5034.
Kato H., Asakura K., Kudo A. (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. Journal of the American Chemical Society 125:3082-3089.
Kim H.G., Hwang D.W., Bae S.W., Jung J.H., Lee J.S. (2003) Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method Catalysis Letters 91:193-198.
Kirk-Othmer. (1999) Concise encyclopedia of chemical technology. Wiley, New York 2.
Kitano M., Takeuchi M., Matsuoka M., Thomas J.M., Anpo M. (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catalysis Today 120:133-138.
Klass D.L. (1998) Biomass for renewable energy, fuels, and chemicals. Chapter 1 Energy consumption, reserves, depletion, and environmental Issues. San Diego: Academic Press:1-27.
Kodama T., Gokon N. (2007) Thermochemical cycles for high-temperature solar hydrogen production. Chem. Rev 107:4048-4077.
Kosanic M.M. (1998) Photocatalytic degradation of oxalic acid over TiO2 power. Journal of Photochemistry and Photobiology A: Chemistry 119:119-122.
Kudo A., Miseki Y. (2008) Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 38:253–278.
Kudo A., Kato H., Nakagawa S. (1999) Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. The Journal of Physical Chemistry B 104:571-575.
Lair A., Ferronato C., Chovelon J.-M., Herrmann J.-M. (2008) Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions. Journal of Photochemistry and Photobiology A: Chemistry 193:193–203.
Levchenko A., Dobrovolsky Y., Bukun N., Leonova L., Zyubina T., Neudachina V., Yashina L., Tarasov A., Shatalova T., Shtanov V. (2007) Chemical and electrochemical processes in low-temperature superionic hydrogen sulfide sensors. Russian Journal of Electrochemistry 43:552-560.
Levent M., J. Gunn D., Ali El-Bousiffi M. (2003) Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor. International Journal of Hydrogen Energy 28:945-959.
Li Hsiung T., Paul Wang H., Wang H.C. (2006) XANES studies of photocatalytic active species in nano TiO2-SiO2. Radiation Physics and Chemistry 75:2042-2045.
Li Y., Gao D., Peng S., Lu G., Li S. (2011a) Photocatalytic hydrogen evolution over Pt/Cd0.5Zn0.5S from saltwater using glucose as electron donor: An investigation of the influence of electrolyte NaCl. International Journal of Hydrogen Energy 36:4291-4297.
Li Y., Hea F., Penga S., Gaoa D., Lu G., Li S. (2011b) Effects of electrolyte NaCl on photocatalytic hydrogen evolution in the presence of electron donors over Pt/TiO2. Journal of Molecular Catalysis A: Chemical 341:71–76.
Lim S.H., Luo J., Zhong Z., Ji W., Lin J. (2005) Room-temperature hydrogen uptake by TiO2 nanotubes. Inorganic Chemistry 44:4124-4126.
Lindgren T., Mwabora J.M., Avendaño E., Jonsson J., Hoel A., Granqvist C.-G., Lindquist S.-E. (2003) Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. The Journal of Physical Chemistry B 107:5709-5716.
Linsebigler A.L., Lu G., John T. Yates J. (1995) Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chemical Review 95:735-758.
Lipman T.E. (2004) What will power the hydrogen economy? Present and future sources of hydrogen energy. Energy and resources group and institute of transportation Studies University of California - Berkeley:1-51.
Luca V., Djajanti S., Howe R.F. (1998) Structural and eectronic properties of sol−gel titanium oxides studied by X-ray absorption spectroscopy. The Journal of Physical Chemistry B 102:10650-10657.
Maeda K., Domen K. (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. Journal of Physical Chemistry C 111:7851-7861.
Maeda K., Masuda H., Domen K. (2009) Effect of electrolyte addition on activity of (Ga1_xZnx)(N1_xOx) photocatalyst for overall water splitting under visible light. Catalysis Today 147:173–178.
Maeda K., Teramura K., Lu D., Takata T., Saito N., Inoue Y., Domen K. (2006) Characterization of Rh−Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting. The Journal of Physical Chemistry B 110:13753-13758.
Matsumoto Y., Koinuma M., Iwanaga Y., Sato T., Ida S. (2009) N doping of oxide nanosheets. Journal of the American Chemical Society 131:6644-6645.
Melis A., Zhang L. (1999) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga chlamydomonas reinhardtii. Proceedings of the 1999 U.S DOE Hydrogen Program Review:1-19.
Mishima T., Matsuda M., Miyake M. (2007) Visible-light photocatalytic properties and electronic structure of Zr-based oxynitride, Zr2ON2, derived from nitridation of ZrO2. Applied Catalysis A: General 324:77-82.
Mozia S., Toyoda M., Inagaki M., Tryba B., Morawski A.W. (2007) Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor. Journal of Hazardous Materials 140:369-375.
Muradov N.Z. (2009) Production of hydrogen from hydrocarbons. CRC PressTaylor & Francis Group:33-101.
Nada A.A., Barakat M.H., Hamed H.A., Mohamed N.R., Veziroglu T.N. (2005) Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. International Journal of Hydrogen Energy 30:687-691.
Nagaveni K., Hegde M.S., Madras G. (2004a) Structure and photocatalytic activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. The Journal of Physical Chemistry B 108:20204-20212.
Nagaveni K., Sivalingam G., Hegde M.S., Madras G. (2004b) Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental Science & Technology 38:1600-1604.
Nandini A., Pant K.K., Dhingra S.C. (2006) Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst. Applied Catalysis A: General 308:119-127.
Ni M., Leung M.K.H., Leung D.Y.C., Sumathy K. (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews 11:401-425.
Niishiro R., Katoa H., Kudo A. (2005) Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys. Chem 7:2241-2245.
O'Regan B., Gratzel M. (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737-740.
Olah G.A., Goeppert A., Prakash G.K.S. (2006) Beyond oil and gas: The methanol economy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Onda K., Kyakuno T., Hattori K., Ito K. (2004) Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis. Journal of Power Sources 132:64-70.
Ou H.-H., Lo S.-L. (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology 58:179-191.
Ozawa T., Iwasaki M., Tada H., Akita T., Tanaka K., Ito S. (2005) Low-temperature synthesis of anatase-brookite composite nanocrystals: The junction effect on photocatalytic activity. Journal of Colloid and Interface Science 281:510-513.
Palomino G.T., Fisicaro P., Bordiga S., Zecchina A., Giamello E., Lamberti C. (2000) Oxidation sates of copper Ions in ZSM-5 zeolites. A multitechnique investigation. The Journal of Physical Chemistry B 104:4064-4073.
Panizza M., Barbucci A., Ricotti R., Cerisola G. (2007) Electrochemical degradation of methylene blue. Separation and Purification Technology 54:382-387.
Pant K.K., Gupta R.B. (2009) Fundamentals and use of hydrogen as a fuel. Hydrogen Fuel: Production, Transport, and Storage:3-32.
Park H., Vecitis C.D., Hoffmann M.R. (2009) Electrochemical water splitting coupled with organic compound oxidation: The role of active chlorine species. J. Phys. Chem. C 113:7935–7945.
Ravel B., Newville M. (2005) Athena and Artemis: Interactive graphical data analysis using IFEFFIT. Physica Scripta 115:1007–1010.
Rostrup-Nielsen J.R. (2000) New aspects of syngas production and use. Catalysis Today 63:159-164.
Sayama K., Arakawa H. (1996) Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst. Journal of Photochemistry and Photobiology A: Chemistry 94:67-76.
Schiavello M. (1997) Heterogenous photocatalysis. John Wiley & Sons Ltd.
Sediroglu V., Eroglu I., Yücel M., Türker L., Gündüz U. (1999) The biocatalytic effect of halobacterium halobium on photoelectrochemical hydrogen production. Journal of Biotechnology 70:115-124.
Shi J.Y., Chen J., Feng Z.C., Chen T., Lian Y.X., Wang X.L., Li C. (2007) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. Journal of Physical Chemistry C 111:693-699.
Slokar Y.M., Majcen Le Marechal A. (1998) Methods of decoloration of textile wastewaters. Dyes and Pigments 37:335-356.
Sreethawong T., Yoshikawa S. (2006) Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. International Journal of Hydrogen Energy 31:786-796.
Sreethawong T., Laehsalee S., Chavadej S. (2008) Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation. International Journal of Hydrogen Energy 33:5947-5957.
Steinfeld A. (2005) Solar thermochemical production of hydrogen - A review. Solar Energy 78:603-615.
Sun W., Zhang S., Liu Z., Wang C., Mao Z. (2008) Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts. International Journal of Hydrogen Energy 33:1112-1117.
Tian M., Shangguan W., Yuan J., Jiang L., Chen M., Shi J., Ouyang Z., Wang S. (2006) K4Ce2M10O30 (M = Ta, Nb) as visible light-driven photocatalysts for hydrogen evolution from water decomposition. Applied Catalysis A: General 309:76-84.
Tsuji I., Kato H., Kobayashi H., Kudo A. (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. Journal of the American Chemical Society 126:13406-13413.
Umebayashi T., Yamaki T., Itoh H., Asai K. (2002) Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids 63:1909-1920.
Wang H., Wang X., Li M., Li S., Wang S., Ma X. (2009) Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. International Journal of Hydrogen Energy 34:5683-5690.
Warmuzinski K., Tanczyk M. (1997) Multicomponent pressure swing adsorption Part I. Modelling of large-scale PSA installations. Chemical Engineering and Processing 36:89-99.
Wilke K., Breuer H.D. (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Photochemistry and Photobiology A: Chemistry 121:49-53.
Wu Y., Lu G., Li S. (2006) The long-term photocatalytic stability of Co2+-modified P25-TiO2 powders for the H2 production from aqueous ethanol solution. Journal of Photochemistry and Photobiology A: Chemistry 181:263-267.
Wu Z.Y., Ouvrard G., Gressier P., Natoli C.R. (1997) Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra. Physical Review B 55:10382-10391.
Xiao J.B. (2006) Determination of nine components in bayer liquors by high performance ion chromatography with conductivity detector. Journal of the Chilean Chemical Society 51:964–967.
Xu A.-W., Gao Y., Liu H.-Q. (2002) The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. Journal of Catalysis 207:151-157.
Ya-Hui Y., Qi-Yuan C., Zhou-Lan Y., Jie L. (2009) Study on the photocatalytic activity of K2La2Ti3O10 doped with zinc (Zn). Applied Surface Science 255:8419-8424.
Yamashita H., Ichihashi Y., Takeuchi M., Kishiguchi S., Anpo M. (1999) Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. Journal of Synchrotron Radiation 6:451-452.
Yan H.J., Yang J.H., Ma G.J., Wu G.P., Zong X., Lei Z.B., Shi J.Y., Li C. (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. Journal of Catalysis 266:165-168.
Ye J., Zou Z., Matsushita A. (2003) A novel series of water splitting photocatalysts NiM2O6 (M=Nb,Ta) active under visible light. International Journal of Hydrogen Energy 28:651-655.
Yi Z., Ye J., Kikugawa N., Kako T., Ouyang S., Stuart-Williams H., Yang H., Cao J., Luo W., Li Z., Liu Y., Withers R.L. (2010) An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat Mater 9:559-564.
Yoon S., Kang I., Bae J. (2008) Effects of ethylene on carbon formation in diesel autothermal reforming. International Journal of Hydrogen Energy 33:4780-4788.
Yoshino F., Ikeda H., Masukawa H., Sakurai H. (2007) High photobiological hydrogen production activity of a nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol 9:101-112.
Yu J., Hai Y., Jaroniec M. (2011) Photocatalytic hydrogen production over CuO-modified titania. Journal of Colloid and Interface Science 357:223-228.
Zeppieri M., Villa P.L., Verdone N., Scarsella M., De Filippis P. (2010) Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts. Applied Catalysis A: General 387:147-154.
Zhang L., Kanki T., Sano N., Toyoda A. (2003) Development of TiO2 photocatalyst reaction for water purification. Separation and Purification Technology 31:105-110.