| 研究生: |
賴佳芸 Lai, Jia-yun |
|---|---|
| 論文名稱: |
氧化釔粉末粒徑對YAG生成活化能之影響 The size effect of Y2O3 on the YAG formation activation energy |
| 指導教授: |
顏富士
Yen, Fu-su |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 釔鋁石榴石 、活化能 |
| 外文關鍵詞: | activation energy, YAG |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往使用微米級Al2O3+Y2O3原料粉末,以固態反應法製備YAG (Y3Al5O12)粉末的過程中,一般歸咎於粉末的合成受限於成分的擴散距離,使煅燒溫度需至1600℃始可得單相YAG,而藉由降低起始反應物之粒徑,使反應物表面積增加,可提高反應物彼此接觸點,促使反應發生,降低活化能,因此原料粉末的尺寸必為合成材料的一項重要因素。然以不同粒徑之原料粉末合成YAG的系統研究尚未被提出,本研究以改變原料粉末之粒徑,觀察其對YAG生成過程的影響。實驗擬使用三種不同粒徑:100 nm (S),400 nm (M),700 nm (L)之氧化釔(Y2O3),分別與固定粒徑(150 nm)之氧化鋁(α-Al2O3)混合為起始粉末,並分別以從室溫升溫與直接置入高溫之快速升溫兩種方式進行煅燒,之後觀察比較YAG合成過程的差異,並計算三系統之YAG生成活化能。實驗結果得知,隨氧化釔粒徑變小,YAM、YAP及YAG之合成溫度亦隨之降低;由定量分析結果並配合YAG生成活化能計算結果可發現,YAG 之生成於不同溫度範圍有不同來源:< 1150℃主要為氧化釔與氧化鋁直接成YAG,生成活化能約100 kJ/mol,為介面控制(Interface control)生成機制;1150-1200℃為YAM及YAP轉換而來,活化能約400 kJ/mol,為擴散控制(Diffusion control)生成機制;> 1200℃則為YAP的轉換或剩餘大粒子之氧化釔反應而來,此部分之活化能於本實驗中不易觀察故無法得知。另外本實驗亦發現使用奈米級起始粉末合成YAG,YAM、YAP、YAG三相均可於快速置入高溫熱處理後瞬間合成,其中生成速率與消失速率均以YAM為最快。
Due to micron-scaled Al2O3+Y2O3 starting powders for synthesizing YAG (Y3Al5O12) powder using via solid state reaction, the temperature for pure YAG formation usually performed above 1600℃. Lowering the particle sizes of reactants could raise contact points, so as to promote the reaction to occur. Therefore, the size of starting powders must be one of crucial factors for material synthesis. However, a systematic research on YAG formation by using different size of starting powders has not be done so far. In this study, the difference in the process of YAG formation caused by reactant particle sizes was observed. The starting powders were mixed respectively from α-Al2O3 (150 nm) and Y2O3 with three different sizes ( 100 nm (S), 400 nm (M), and 700 nm (L)) , then calcined by two ways:(1) treating with a heating rate of 10℃/min from R.T to specific temperatures and (2) placing in high temperatures rapidly. After heat treatment, the comparison of YAG formation processes occurred in three systems was made and YAG formation activation energies (Ea) for three systems were calculated by the isothermal kinetics.
The results are showed as following. The smaller the size of Y2O3 was, the lower temperatures of YAM, YAP and YAG phases formed. Three mechanisms should be existed in three different temperature ranges in the process of YAG formation. (1) Below 1150℃, YAG was formed from reaction between Al2O3 and Y2O3 directly, and the Ea of YAG formation was about 100 kJ/mol caused by interface-control mechanism; (2) between 1150-1200℃, YAG was formed from YAM or YAP reacted with Al2O3, and the Ea of YAG formation was about 400 kJ/mol attributed to diffusion-control mechanism; (3) above 1200℃, YAG was transformed from YAP or the residual Y2O3 reacted with Al2O3, and the mechanism was difficult to be observed in this study. The YAG, YAM, and YAP could be synthesized instantaneously as the samples were subjected to high temperatures rapidly, while nano-scaled powders were used as starting materials. Among these phase, YAM showed the fastest formation rate and disappearing rate.
[1] Li J.G., T. Ikegami, J.H. Lee, T. Mori, and Y. Yajima, “Co-precipitation Synthesis and Sintering of Yttrium Aluminum Garnet (YAG) Powders: The Effect of Precipitant,” J. Euro. Ceram. Soc., 20(2000)2395-2405.
[2] 溫佑良,不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究,國立成功大學材 料科學及工程學系碩士論文,民國93年。
[3] 孫培真、黃建晃 ,”新世代節能環保照明-白光LED” , 生活科技教育月刊, 2005年 三十八卷 第七期
[4] D. Viechnicki and Y.I. Strakhov, “Solid-state formation of Nd:Y3Al5O12(Nd:YAG),” Am. Ceram. Soc. Bull., 58 [8] (1979) 790-791.
[5] A.E. Zhukovskaya and V.I. Strakhov,”Influence of the molar ratio pf Y2O3 to Al2O3 on the kinetics of synthesis of yttrium aluminates,” Prikadnoi Khimii, 48(1975)1125-1127.
[6] A. Ya. Neiman , E. V. Tkachenko , L. A. Kvichko and L. A. Kotok ,”Conditions and Macromechanism of the Solid-phase Synthesis of Yttrium Aluminates,” Russ. J. Inorg. Chem. , 25 (9) (1980) , 2340-2345 .
[7] V. B. Glushkova, V. A. Krzhizhanovskaya et al. ,”Interaction of yttrium and aluminum oxide,” Inorg. Mater. (Engl. Transl.) , 19 [1] (1983) 95-99.
[8] S. Ramanathan, M.B. Kakade, S.K. Roy and K.K. Kutty, ”Processing and characterization of combustion synthesized YAG powders,” Ceramics International, 29(2003)477-484
[9] C. H. Lu , W. T. Hsu, “Sol-gel pyrolysis and photoluminescent characteristic of europium-ion doped yttrium aluminum garnet nanophosphors,” J. Euro. Ceram. Soc. 24 (2004) 3723-3729
[10] M. Nyman, J. Caruso, and M.J. Hampden-Smith, “Comparison of solid-state and spray-pyrolysis synthesis of yttrium aluminate powders,” J. Am. Ceram. Soc., 80 [5] (1997) 1231-1238.
[11] L. Wen, X. Sun, Z. Xiu, S. Chen and C.T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc., 24(2000)2681-2688.
[12] G. T. Adylov, G. V. Voronov, E. P. Mansurova, L. M. Sigalov, E. M. Urazaeva, and Zh. Neorg. Khtm, “High-temperature powder X-ray diffraction of yttria to melting point,” J. Inorg. Chem. 33, [7], (1988)1867-1869.
[13] R.C. Buchanan,”Ceramic materials for electronics:Processing, properties, and application.”MARCEL DEKKER, INC. NEW YORK.
[14] J.M. Robertson, M.W. Van Tol, J.P.H. Heynen, W.H. Smits and T. de Boer, ”Thin single crystalline phosphor layers grown by liquid phase epitaxy,” Philips J. res. 35 [6] (1980)354-371.
[15] C. Klein, C.S. Hurlbut,jr., Manual of Mineralogy, John wiley & sons, Inc, 1993.
[16] 黃啟祥、林江財 , 陶瓷技術手冊(上) , 中華民國產業科技發展協進會與中華民國粉末冶金協會出版 , 民國83年7月 44~45。
[17] A. Ikesue, K. Kamata and K. Yoshida, “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid-state lasers”, Journal of the Am. Ceram. Soc. , 78 (1995) 2545-2547.
[18] H.S. Yoder and M.L. Keith , “Complete substitution of aluminium for silicon: The system 3MnO‧Al2O3‧3SiO2-3 Y2O3‧5 Al2O3,” Am. Mineralogist, 36 [7/8] (1951) 519-533.
[19] G.T. Adylov, G.V. Voronov et al. ,” The Y2O3-Al2O3 system above 1473K, ” Russ. J. Inorg. Chem., 33 [7] (1988) 1062-1063.
[20] M. Medraj, R. Hammond et al. ,” High temperature neutron diffraction study of the Al2O3-Y2O3 system, ” J. Euro. Ceram. Soc., 26 (2006) 3515-3524.
[21] K. M. Kinsman, J. McKittrick, E. Sluzky, and K. Hesse, “Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAG:Cr) phosphors,” J. Am. Ceram. Soc., 77(1994) [11] 2866–72.
[22] I. Matsubara, M. Paranthamana, S.W. Allisonb, M.R. Catesb, D.L. Beshearsb, and D.E. Holcombc, 2000, Preparation of Cr-doped Y3Al5O12 phosphors by heterogeneous precipitation methods and their luminescent properties, Mater. Res. Bull., 35, 217–224.
[23] I. Warshaw and R. Roy ,” Stable and metastable equilibria in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3” , J. Am. Ceram. Soc., 42 [9] (1959) 434-438.
[24] G. Gowda ,” Synthesis of yttrium aluminates by the sol-gel process” , J. Mater. Sci. Lett., 5 (1986) 1029-1032.
[25] Q. Li, L. Gao, D. Yan,” The crystal structure and spectra of nano-scale YAG:Ce3+” , Mater. Chem. Phys., 64 (2000) 41-44
[26] G. Xia, S. Zhou, J. Zang, J. Xu,” Structural and optical properties of YAG:Ce3+ phosphors by sol-gel combustion method,” J. Crystal Growth, 279 (2005) 357-362.
[27] J.A. Deluca, “An introduction to luminescence in organic solids.” J. chemical Education, 57 [8] (1980)541-545
[28] O. Yamaguchi, K. Takeoka, K. Hirota, H. Takano and A. Hayashida, “Formation of alkoxy-derived yttrium aluminium oxides.” J. Mater. Sci., 27(1992)1261-1264.
[29] Y. Pan, M. Wu, Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor,” Mater. Sci. Eng. B, 106 (2004) 251-256.
[30] Y. Iida, A. Towata, T. Tsugoshi, and M. Furukawa, “In situ Raman monitoring of low-temperature synthesis of YAG from different starting materials, ” Vibrational Spectroscopy, 19(1999)399-405
[31] 張俊龍,奈米級氧化鋁粉末θ→α-Al2O3相轉換活化能研究,國立成功大學資源工程學系碩士論文,民國91年。
[32] H.G. Wang, H. Herman and X. Liu, “Activation energy for crystal growth using isothermal and continuous heating processes,” J. Mater. Sci., 25(1990)2339-2343.
[33] Putnis, A., Introduction to Mineral Sciences, Cambridge University Press New York, 1992.
[34] M.V. Kniga, T.G. Mikhaleva, and M.N. Rivkin, “Interaction in the yttrium oxide-alumina system,” Russ. J. Inorg. Chem., 17 [6](1972)903-905
[35] R.S. Hay, ”Phase transformations and microstructure evolution in sol-gel derived yttrium-aluminum garnet films.” J. Mater. Res., 8(1993)578-604
[36] J. R. Lo and T.Y. Tseng, “Phase development and actication energy of the Y2O3-Al2O3 system by a modified sol-gel progress,” Mater. Chem. Phys., 56(1998)56-62.
[37] 石明哲, 晶種對YAG粉末之生成影響研究 ,國立成功大學資源工程研究所碩士論文 , 中華民國九十五年六月。
[38] M. S. Tsai, W. C. Fu and G. M. Liu, “ Effect of pre-aging pH on the formation of yttrium aluminum garnet powder(YAG) via the solid state reaction method,” J. Alloys Comp., 440(2007)309-314.
[39] M. S. Tsai, W. C. Fu, W. C. Wu, C. H. Chen and C. C. Yang“ Effect of the aluminum source on the formation of yttrium aluminum garnet(YAG) powder via the solid state reaction,” J. Alloys Comp., 404(2007)309-314.
[40] H. C. Kao and W. C. Wei, “Kinetics and mircrostructural evolution of heterogeneous transformation of θ-alumina to α-alumina, ” J. Am. Ceram. Soc., 83 [2] (2002) 362-368.