簡易檢索 / 詳目顯示

研究生: 施光浩
Shih, Guang-Hao
論文名稱: 聚(N-乙烯甲醯胺)於鋰離子電池隔離膜之應用
Application of Poly(N-vinylformamide) on Separators for Li-ion Batteries
指導教授: 侯聖澍
Hou, Sheng-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 聚 (N-乙烯甲醯胺 )氧化鋁二氧化鈦隔離膜鋰電池
外文關鍵詞: poly(N-vinylformamide), separator, Li-ion batteries, aluminium oxide, titanium dioxide
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以高分子、陶瓷材料為主體製備鋰離子電池的複合隔離膜分別探討高分子塗佈於PP (Polypropylene)隔離膜、陶瓷材料塗佈於PP隔離膜以及陶瓷複合隔離膜。為了改善純高分子隔離膜的缺陷,加入氧化鋁以及二氧化鈦以旋轉塗佈的方式製成陶瓷複合隔離膜塗佈於正極。
    利用聚(N-乙烯甲醯胺) (Poly(N-vinylformamide), PNVF)塗佈於PP隔離膜,發現阻抗比PP隔離膜低使循環壽命上有明顯的差異。此外能減緩鋰枝晶刺破隔離膜的時間。PNVF的醯胺官能基推測有助於減少LiF的產生。
    陶瓷塗佈於PP隔離膜比電容量略低於PP隔離膜,其原因與氧化鋁與鋰產生副反應。可以發現陶瓷層面向鋰金屬的阻抗小於面向正極,主要是因為接觸面的緣故,導致陶瓷層面向正極阻抗較大。此外陶瓷層塗佈有效阻隔了鋰枝晶的生長,避免刺破隔離膜。
    由熱穩定測試中可知,在150 ֯C下陶瓷複合膜仍可保有原來的樣貌並未受到加熱收縮或燃燒。為瞭解決陶瓷隔離膜漏電的窘境,加入奈米等級的二氧化鈦以及隔離膜厚度的調整。組裝成電池後,整體比量容量與商用PP隔離膜相比,略小一點,其原因與陶瓷塗佈相同。在短路測試中,發現能更有效的避免鋰枝晶所造成的短路問題。

    The composite separators are made of Poly(N-vinylformamide)(PNVF) and ceramic for Li-ion batteries to be investigated influences on physical properties, electrochemical performance and safety. EIS analysis shows that impedance of PNVF-coated separator is small than Polypropylene (PP) separator and result in longer cycle life. On galvanostatic cycling voltage profiles, PNVF strengthens PP separator to slow down dendrite formation. On second section, the specific capacity of Al2O3 and TiO2 spin coating on Separator is lower than PP separator because Al2O3 reacts with Li. Due to contact with a ceramic layer, facing Li anode shows better performances than LFP cathode in general. On Final section, Preparing the composite separators need to be noted factors of pore size and thickness or it happens micro short-circuit. And it also doesn’t melt and flame at 150 ֯C to lead to prevent batteries from thermal runaway. Furthermore, dendrite cannot go through composite ceramic separators more than 1400 hours like ceramic-coated separators shown galvanostatic cycling voltage profiles.

    摘要 I Extended Abstract II 表目錄 XII 圖目錄 XIII 1-1引言 1 1-2鋰離子電池與工作原理 2 1-3正極材料 3 1-4負極材料 4 1-5電解質 6 1-6隔離膜 6 第二章 研究動機 7 第三章 文獻回顧 8 3-1高分子塗佈於隔離膜 8 3-2氧化鋁塗佈於隔離膜 11 3-3其他陶瓷材料塗佈於隔離膜 16 3-4複合陶瓷隔離膜 19 第四章 實驗原理與步驟 23 4-1實驗藥品與儀器設備 23 4-2聚(N-乙烯甲醯胺)之合成 26 4-3 PNVF塗佈於PP商用隔離膜之製作 26 4-4陶瓷材料塗佈於PP商用隔離膜之製作 26 4-5複合陶瓷隔離膜之製作 27 4-5-1電池磷酸鋰鐵正極製作 27 4-5-2複合陶瓷隔離膜塗佈於正極 27 4-6組裝鈕扣型電池 28 4-7 X光電子能譜分析 28 4-8掃描式電子顯微鏡 29 4-9電化學阻抗分析 30 4-10循環伏安法 32 第五章 結果與討論 34 5-1 PNVF塗佈於PP商用隔離膜 34 5-1-1電解液潤濕程度及離子傳導度 34 5-1-2掃描式電子顯微鏡之形貌分析 36 5-1-3熱穩定測試 38 5-1-4電池的電化學表現 40 5-1-5極化現象之探討 43 5-1-6電池阻抗之分析 44 5-1-7氟化鋰含量之探討 47 5-1-8鋰枝晶測試 49 5-2 陶瓷材料塗佈於PP商用隔離膜 51 5-2-1電解液潤濕程度及離子傳導度 51 5-2-2掃描式電子顯微鏡之形貌分析 53 5-2-2熱穩定測試 53 5-2-3電池的電化學表現 55 5-2-4循環伏安之分析 59 5-2-5極化現象之探討 60 5-2-6電池阻抗之分析 61 5-2-7鋰枝晶測試 65 5-3 陶瓷複合隔離膜 65 5-3-1成膜測試 65 5-3-2隔離膜之孔洞大小與分佈 66 5-3-3熱穩定及燃燒測試 69 5-3-4電解液吸收程度及離子傳導度測試 70 5-3-5漏電情況之探討 74 5-3-6電池的電化學表現 76 5-3-7極化現象之探討 79 5-3-8電池阻抗之分析 80 5-3-9鋰枝晶測試 84 第六章 結論 87 參考文獻 88

    1.Li, H.; Wang, Z.; Chen, L.; Huang, X., Research on advanced materials for Li‐ion batteries. Adv. Mater. 2009, 21 (45), 4593-4607.
    2.Scrosati, B.; Garche, J., Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195 (9), 2419-2430.
    3.Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Mater. Today 2015, 18 (5), 252-264.
    4.Arora, P.; Zhang, Z., Battery separators. Chem. Rev. 2004, 104 (10), 4419-4462.
    5.Zhang, S. S., A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164 (1), 351-364.
    6.Zhang, W.; Tu, Z.; Qian, J.; Choudhury, S.; Archer, L. A.; Lu, Y., Design Principles of Functional Polymer Separators for High‐Energy, Metal‐Based Batteries. Small 2018, 14 (11), 1703001.
    7.Ozawa, K., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 1994, 69 (3-4), 212-221.
    8.Gabano, J.-P., Lithium batteries. London and New York, Academic Press, 1983, 467 p. 1983.
    9.Nazri, G.-A.; Pistoia, G., Lithium batteries: science and technology. Springer Science & Business Media: 2008.
    10.Lipkowski, J.; Ross, P. N., The electrochemistry of novel materials. VCH Publishers: 1994; Vol. 3.
    11.Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 2011, 4 (9), 3243-3262.
    12.Murphy, D. W.; Trumbore, F. A., The Chemistry of TiS3 and NbSe3 Cathodes. J. Electrochem. Soc. 1976, 123 (7), 960-964.
    13.Orendorff, C. J.; Doughty, D. H., Lithium ion battery safety. The Electrochemical Society Interface 2012, 21 (2), 35-35.
    14.Scharner, S.; Weppner, W.; Schmid‐Beurmann, P., Evidence of Two‐Phase Formation upon Lithium Insertion into the Li10. 33Ti10. 67 O 4 Spinel. J. Electrochem. Soc. 1999, 146 (3), 857-861.
    15.An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood III, D. L., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52-76.
    16.Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7 (12), 3857-3886.
    17.Xiang, Y.; Li, J.; Lei, J.; Liu, D.; Xie, Z.; Qu, D.; Li, K.; Deng, T.; Tang, H., Advanced separators for lithium‐ion and lithium–sulfur batteries: a review of recent progress. ChemSusChem 2016, 9 (21), 3023-3039.
    18.Ma, C.; Zhang, J.; Xu, M.; Xia, Q.; Liu, J.; Zhao, S.; Chen, L.; Pan, A.; Ivey, D. G.; Wei, W., Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries. J. Power Sources 2016, 317, 103-111.
    19.Chen, H.; Lin, Q.; Xu, Q.; Yang, Y.; Shao, Z.; Wang, Y., Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J. Membr. Sci. 2014, 458, 217-224.
    20.Pitawala, H.; Dissanayake, M.; Seneviratne, V., Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO) 9LiTf. Solid State Ionics 2007, 178 (13-14), 885-888.
    21.Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M., Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 2001, 46 (16), 2457-2461.
    22.Choi, H.; Kim, H. W.; Ki, J.-K.; Lim, Y. J.; Kim, Y.; Ahn, J.-H., Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries. Nano Research 2017, 10 (9), 3092-3102.
    23.Yan, X.; Li, Z.; Wen, Z.; Han, W., Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J. Phys. Chem. C 2017, 121 (3), 1431-1435.
    24.Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W., Mussel‐inspired polydopamine‐treated polyethylene separators for high‐power Li‐ion batteries. Adv. Mater. 2011, 23 (27), 3066-3070.
    25.Song, J.; Ryou, M.-H.; Son, B.; Lee, J.-N.; Lee, D. J.; Lee, Y. M.; Choi, J. W.; Park, J.-K., Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochim. Acta 2012, 85, 524-530.
    26.Yu, L.; Jin, Y.; Lin, Y., Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: effects of high melting point organic binder. RSC Advances 2016, 6 (46), 40002-40009.
    27.Choi, J.-A.; Kim, S. H.; Kim, D.-W., Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J. Power Sources 2010, 195 (18), 6192-6196.
    28.Jeon, H.; Yeon, D.; Lee, T.; Park, J.; Ryou, M.-H.; Lee, Y. M., A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J. Power Sources 2016, 315, 161-168.
    29.Jeon, H.; Jin, S. Y.; Park, W. H.; Lee, H.; Kim, H.-T.; Ryou, M.-H.; Lee, Y. M., Plasma-assisted water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium metal secondary batteries. Electrochim. Acta 2016, 212, 649-656.
    30.Raja, M.; Bicy, K.; Suriyakumar, S.; Angulakshmi, N.; Thomas, S.; Stephan, A. M., High performing magnesium aluminate-coated separator for lithium batteries. Ionics 2018, 24 (11), 3451-3457.
    31.Cho, J.; Jung, Y.-C.; Lee, Y. S.; Kim, D.-W., High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. J. Membr. Sci. 2017, 535, 151-157.
    32.Jung, Y.-C.; Kim, S.-K.; Kim, M.-S.; Lee, J.-H.; Han, M.-S.; Kim, D.-H.; Shin, W.-C.; Ue, M.; Kim, D.-W., Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety. J. Power Sources 2015, 293, 675-683.
    33.Raja, M.; Angulakshmi, N.; Thomas, S.; Kumar, T. P.; Stephan, A. M., Thin, flexible and thermally stable ceramic membranes as separator for lithium-ion batteries. J. Membr. Sci. 2014, 471, 103-109.
    34.李劍平, 掃描電子顯微鏡對樣品的要求及樣品的製備. 分析測試技術與儀器 2007, 13 (1), 74-77.
    35.羅聖全, 電子顯微鏡介紹-SEM. 國立清華大學: 2004.
    36.Andre, D.; Meiler, M.; Steiner, K.; Wimmer, C.; Soczka-Guth, T.; Sauer, D., Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources 2011, 196 (12), 5334-5341.
    37.Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
    38.Jow, T. R.; Delp, S. A.; Allen, J. L.; Jones, J.-P.; Smart, M. C., Factors limiting Li+ charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 2018, 165 (2), A361-A367.
    39.Nicholson, R. S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37 (11), 1351-1355.
    40.Kissinger, P. T.; Heineman, W. R., Cyclic voltammetry. J. Chem. Educ. 1983, 60 (9), 702.
    41.石秉玄. 聚 (N-乙烯甲醯胺) 應用在鋰電池電極黏著劑以及膠態高分子電解質. National Cheng Kung University Department of Chemical Engineering, 2018.
    42.Lee, J. H.; Shin, W. H.; Ryou, M. H.; Jin, J. K.; Kim, J.; Choi, J. W., Functionalized graphene for high performance lithium ion capacitors. ChemSusChem 2012, 5 (12), 2328-2333.
    43.Li, W.; Campion, C.; Lucht, B. L.; Ravdel, B.; DiCarlo, J.; Abraham, K., Additives for stabilizing LiPF6-based electrolytes against thermal decomposition. J. Electrochem. Soc. 2005, 152 (7), A1361-A1365.
    44.Stephan, A. M.; Nahm, K., Review on composite polymer electrolytes for lithium batteries. Polymer 2006, 47 (16), 5952-5964.
    45.Li, Y.; Wan, S.; Veith, G. M.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Sun, X. G., A Novel Electrolyte Salt Additive for Lithium‐Ion Batteries with Voltages Greater than 4.7 V. Advanced Energy Materials 2017, 7 (4), 1601397.
    46.Tressaud, A., Functionalized inorganic fluorides: synthesis, characterization and properties of nanostructured solids. John Wiley & Sons: 2010.
    47.Mittal, K. L., Polymer surface modification: relevance to adhesion. CRC Press: 2004; Vol. 3.
    48.Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Phys. Chem. A 2017, 5 (23), 11671-11681.
    49.Li, X.; Tao, J.; Hu, D.; Engelhard, M. H.; Zhao, W.; Zhang, J.-G.; Xu, W., Stability of polymeric separators in lithium metal batteries in a low voltage environment. J. Phys. Chem. A 2018, 6 (12), 5006-5015.
    50.Xu, R.; Lin, X.; Huang, X.; Xie, J.; Jiang, C.; Lei, C., Boehmite-coated microporous membrane for enhanced electrochemical performance and dimensional stability of lithium-ion batteries. J. Solid State Electrochem. 2018, 22 (3), 739-747.
    51.Yang, C.; Tong, H.; Luo, C.; Yuan, S.; Chen, G.; Yang, Y., Boehmite particle coating modified microporous polyethylene membrane: a promising separator for lithium ion batteries. J. Power Sources 2017, 348, 80-86.
    52.Shi, C.; Dai, J.; Shen, X.; Peng, L.; Li, C.; Wang, X.; Zhang, P.; Zhao, J., A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries. J. Membr. Sci. 2016, 517, 91-99.
    53.Jeong, H.-S.; Lee, S.-Y., Closely packed SiO2 nanoparticles/poly (vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sources 2011, 196 (16), 6716-6722.
    54.Fu, D.; Luan, B.; Argue, S.; Bureau, M. N.; Davidson, I. J., Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J. Power Sources 2012, 206, 325-333.
    55.Liang, X.; Yang, Y.; Jin, X.; Huang, Z.; Kang, F., The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 2015, 493, 1-7.
    56.Kim, K. M.; Park, N.-G.; Ryu, K. S.; Chang, S. H., Characterization of poly (vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles. Polymer 2002, 43 (14), 3951-3957.
    57.Karlsson, C.; Best, A.; Swenson, J.; Howells, W.; Börjesson, L., Polymer dynamics in 3PEG–LiClO4–TiO2 nanocomposite polymer electrolytes. The Journal of chemical physics 2003, 118 (9), 4206-4212.
    58.Forsyth, M.; MacFarlane, D.; Best, A.; Adebahr, J.; Jacobsson, P.; Hill, A., The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics 2002, 147 (3-4), 203-211.
    59.Guler, M. O.; Cevher, O.; Cetinkaya, T.; Tocoglu, U.; Akbulut, H., High capacity TiO2 anode materials for Li-ion batteries. Energy Convers. Manage. 2013, 72, 111-116.
    60.El-Deen, S.; Hashem, A.; Ghany, A. A.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C., Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics 2018, 24 (10), 2925-2934.
    61.Madian, M.; Eychmüller, A.; Giebeler, L., Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries. Batteries 2018, 4 (1), 7.
    62.Abe, T.; Sagane, F.; Ohtsuka, M.; Iriyama, Y.; Ogumi, Z., Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-A key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 2005, 152 (11), A2151-A2154.
    63.張中瑋; 黃奕誠; 董泯言; 賴秋君, 新型介面活性劑對奈米粉體粒子分散性之探討. Journal of the Hwa Gang Textile 2016, 23 (4).
    64.Geankoplis, C. J., Transport processes and separation process principles:(includes unit operations). Prentice Hall Professional Technical Reference: 2003.
    65.Yu, B.; Zhao, X.-M.; Jiao, X.-N.; Qi, D.-Y., Composite nanofiber membrane for lithium-ion batteries prepared by electrostatic spun/spray deposition. Journal of Electrochemical Energy Conversion and Storage 2016, 13 (1), 011008.
    66.Ahn, Y.-k.; Park, J.; Shin, D.; Cho, S.; Park, S. Y.; Kim, H.; Piao, Y.; Yoo, J.; Kim, Y. S., Enhanced electrochemical capabilities of lithium ion batteries by structurally ideal AAO separator. J. Phys. Chem. A 2015, 3 (20), 10715-10719.
    67.Wang, Z.; Xiang, H.; Wang, L.; Xia, R.; Nie, S.; Chen, C.; Wang, H., A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J. Membr. Sci. 2018, 553, 10-16.
    68.Zhao, X.; Zhang, Z.; Yang, S.; Liang, G., Inorganic ceramic fiber separator for electrochemical and safety performance improvement of lithium-ion batteries. Ceram. Int. 2017, 43 (17), 14775-14783.
    69.Luo, X.; Liao, Y.; Zhu, Y.; Li, M.; Chen, F.; Huang, Q.; Li, W., Investigation of nano-CeO2 contents on the properties of polymer ceramic separator for high voltage lithium ion batteries. J. Power Sources 2017, 348, 229-238.
    70.Solarajan, A. K.; Murugadoss, V.; Angaiah, S., High performance electrospun PVdF‐HFP/SiO2 nanocomposite membrane electrolyte for Li‐ion capacitors. J. Appl. Polym. Sci. 2017, 134 (32), 45177.
    71.Goniakowski, J.; Finocchi, F.; Noguera, C., Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 2007, 71 (1), 016501.
    72.Chera, L.; Palcevskis, E.; Berzins, M.; Lipe, A.; Jansone, I. In Dispersion of nanosized ceramic powders in aqueous suspensions, Journal of Physics: Conference Series, IOP Publishing: 2007; p 012010.
    73.Gregušová, D.; Stoklas, R.; Čičo, K.; Lalinský, T.; Kordoš, P., AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors with 4 nm thick Al2O3 gate oxide. Semicond. Sci. Technol. 2007, 22 (8), 947.
    74.Kordoš, P.; Gregušová, D.; Stoklas, R.; Gaži, Š.; Novák, J., Transport properties of AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors with Al2O3 of different thickness. Solid·State Electron. 2008, 52 (6), 973-979.
    75.Wang, C.-W.; Chen, S.-F.; Chen, G.-T., Gamma-ray-irradiation effects on the leakage current and reliability of sputtered TiO2 gate oxide in metal–oxide–semiconductor capacitors. J. Appl. Phys. 2002, 91 (11), 9198-9203.
    76.Kim, H. S.; Gilmer, D.; Campbell, S.; Polla, D., Leakage current and electrical breakdown in metal‐organic chemical vapor deposited TiO2 dielectrics on silicon substrates. Appl. Phys. Lett. 1996, 69 (25), 3860-3862.
    77.Gray, P. R.; Hurst, P.; Meyer, R. G.; Lewis, S., Analysis and design of analog integrated circuits. Wiley: 2001.
    78.Sedra, A. S.; Smith, K. C., Microelectronic circuits. New York: Oxford University Press: 1998.

    下載圖示 校內:2024-07-04公開
    校外:2024-07-04公開
    QR CODE