簡易檢索 / 詳目顯示

研究生: 黃次雄
Huang, Tzu-Hsiung
論文名稱: 血管內皮生長因子和發炎性Ly6C high單核球在呼吸器導致肺損傷之角色探討
Investigating the roles of vascular endothelial growth factor and inflammatory Ly6C high monocytes in ventilator-induced lung injury
指導教授: 張志欽
Chang, Chih-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 58
中文關鍵詞: 呼吸器導致肺損傷血管內皮生長因子單核球
外文關鍵詞: ventilator-induced lung injury, vascular endothelial growth factor, monocyte
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺泡微血管通透性增加是呼吸器導致肺損傷主要的特徵。血管內皮生長因子是潛在促進血管通透性及細胞生長的因子,也可能是造成呼吸器導致肺損傷的原因。Ly6C high 單核球目前已知在呼吸器導致肺損傷過程中,會大量聚集到肺臟,並造成肺臟順應性的降低,但是否藉由分泌血管內皮生長因子促進肺泡微血管通透性的增加,其中的機轉並不清楚。本研究目的探討Ly6C high單核球與其血管內皮生長因子表現在呼吸器引起之肺損傷所扮演的角色。實驗採用脂多醣體合併機械通氣的雙侵襲性模式。 C57BL/6 公鼠分別暴露於高潮氣容積或低潮氣容積通氣達不同時間點。測量肺泡沖洗液及血液中發炎性細胞激素(如:TNF-α和IL-6),全蛋白質,和血管內皮生長因子以建立肺損傷模式,及利用流式細胞儀分析Ly6C high單核球於肺臟的聚集。在另一部分的實驗小鼠則利用clodronate liposomes去除 Ly6C high單核球以確認這類單核球在呼吸器肺損傷中所扮演的角色。研究結果顯示脂多醣體合併高潮氣容積通氣造成肺泡沖洗液中的全蛋白質含量顯著持續性的增加,並且誘導肺泡沖洗液中血管內皮生長因子含量在通氣6小時之後達到高峰。脂多醣體合併高潮氣容積通氣組別比上未機械通氣及低潮氣容積通氣組別有顯著Ly6C high單核球的聚集,同時也顯示Ly6C high單核球細胞內血管內皮生長因子表現的增加。但經由 clodronate liposomes 特異性去除Ly6C high 單核球之後呼吸器導致肺損傷情形則被弱化。因此,在呼吸器導致肺損傷中,發炎性Ly6C high單核球會聚集到肺臟並藉由其血管內皮生長因子的表現促進肺泡微血管的通透性增加。

    The increase of alveolar-capillary permeability is thought to be the prominent features of ventilator-induced lung injury (VILI). Vascular endothelial growth factor (VEGF) is the most potent factor in regulating vascular permeability and mitogenic activity, and it might be responsible for the development of VILI. Furthermore, Ly6C high monocytes are recruited to the lungs and contribute to the decrease of lung compliance in VILI. It is not known whether Ly6C high monocytes are involved in alveolar-capillary permeability through their VEGF production. The aim of this study is to explore the role of Ly6C high monocytes and VEGF in VILI. A “two-hit model” was used, with lipopolysaccharide (LPS) administration combined with mechanical ventilation. Male C57BL/6 mice were exposed to high tidal volume (HTV) or low tidal volume (LTV) mechanical ventilation with room air for different timeline. Inflammatory cytokine (TNF-α and IL-6), total proteins, and VEGF in bronchoalveolar lavage fluid (BALF) and blood were measured. Flow cytometry analysis was used to quantify the recruitment of Ly6C high monocytes to the lungs. The depletion of Ly6C high monocytes with clodronate liposomes was used to establish the role of Ly6C high monocytes in the development of VILI. The results demonstrate that LPS administration combined with HTV caused a significant and sustained increase of total proteins, and induced a significant increases of VEGF protein in BALF with a peak increase at 6 hr. LPS administration combined with HTV resulted in significant pulmonary infiltartion of Ly6C high monocytes with elevated VEGF production (vs. non-ventilated and LTV group). Clodronate liposomes depleted Ly6C high monocytes significantly attenuated VILI. Our results indicate that Ly6C high monocytes infiltrate the lung and contribute to the increase of alveolar-capillary permeability through VEGF production.

    I.Abstract---1 II.Chinese Abstract---2 III.Acknowledgments---3 IV.Content Table---4 V.Introduction---8 A.Acute Respiratory Distress Syndrome (ARDS)---8 B.Ventilator-Induced Lung Injury (VILI)---10 C.Vascular Endothelial Growth Factor (VEGF) in ARDS---11 D.The role of Ly6C high monocytes in VILI--- 13 VI.Specific Aims---17 VII.Materials and Methods---18 A.Animal model of VILI---18 B.Quantitation of total protein in BALF---19 C.Detection of VEGF, IL-6, TNF-α in BALF and blood by ELISA ---20 D.Histopathological studies of the lung in mice---22 E.Mouse lung single cell suspension---22 F.Flow cytometric analysis---23 G.Depletion of Ly6C high monocytes in vivo---24 H.Statistical Analysis---25 VIII.Results---26 1.Physiologic data---26 2.Time-dependent effect of VILI---26 3.Time-dependent effect of VEGF during VILI---27 4.Time-dependent effect of other related cytokines during VILI---27 5.Ly6C high monocytes recruited to the lung during VILI --- 28 6.Intercellular expression of VEGF in Ly6C high monocytes ---29 7.Clodronate liposomes depleted Ly6C high monocytes---29 8.Clodronate liposomes decreased intercellular expression of VEGF in Ly6C high monocytes---30 9.Depleted of Ly6C high monocytes attenuated alveolar- capillary permeability---30 10.Depleted of Ly6C high monocytes improve oxygen---31 IX.Discussion---32 X.References---38 XI.Figures and Legends---44 1.Design of experimental groups for study during VILI---44 2.Physiologic conditions at the beginning and 6 hour of ventilation---45 3.Expression levels of total protein---45 4.Expression levels of VEGF protein---46 5.Expression levels of TNF-α protein---47 6.Expression levels of IL-6 protein--- 48 7.Flow cytometric analysis of Ly6C high monocyte and Ly6C low monocyte---49 8.Intercellular expression of VEGF in Ly6C high monocytes- 50 9.Clodronate liposomes depleted Ly6C high monocytes---51 10.Clodronate liposomes treatment had some effect on neutrophil numbers---52 11.Clodronate liposomes decreased intercellular expression of VEGF in Ly6C high monocytes---53 12.Depletion of Ly6C high monocytes with clodronate lipsomes attenuate VILI---54 XII.Reagents, Drugs and Chemicals---55 XIII.Instruments---57 XIV.Abbreviations---58

    1.Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342:1334-1349.
    2.Zambon M, Vincent JL. Mortality rates for patients with acute lung injury/ards have decreased over time. Chest 2008;133:1120-1127.
    3.Martin TR. Lung cytokines and ards: Roger s. Mitchell lecture. Chest 1999;116:2S-8S.
    4.Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: The berlin definition. JAMA 2012;307:2526-2533.
    5.Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012;122:2731-2740.
    6.Acute respiratory distress syndrome network.Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. New England Journal of Medicine 2000;342:1301-1308.
    7.Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF, Jr., Hite RD, Harabin AL. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006;354:2564-2575.
    8.International consensus conferences in intensive care medicine: Ventilator-associated lung injury in ards. American journal of respiratory and critical care medicine 1999;160:2118-2124.
    9.Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, Rana R, St Sauver JL, Lymp JF, Afessa B, Hubmayr RD. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004;32:1817-1824.
    10.Eisner MD, Thompson BT, Schoenfeld D, Anzueto A, Matthay MA, Acute Respiratory Distress Syndrome N. Airway pressures and early barotrauma in patients with acute lung injury and acute respiratory distress syndrome. American journal of respiratory and critical care medicine 2002;165:978-982.
    11.Pinhu L, Whitehead T, Evans T, Griffiths M. Ventilator-associated lung injury. Lancet 2003;361:332-340.
    12.Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 1985;132:880-884.
    13.Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988;137:1159-1164.
    14.Hernandez LA, Peevy KJ, Moise AA, Parker JC. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 1989;66:2364-2368.
    15.Ferrara N, Gerber HP, LeCouter J. The biology of vegf and its receptors. Nat Med 2003;9:669-676.
    16.Medford AR, Millar AB. Vascular endothelial growth factor (vegf) in acute lung injury (ali) and acute respiratory distress syndrome (ards): Paradox or paradigm? Thorax 2006;61:621-626.
    17.Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins bcl-2 and a1 in vascular endothelial cells. J Biol Chem 1998;273:13313-13316.
    18.Karmpaliotis D, Kosmidou I, Ingenito EP, Hong K, Malhotra A, Sunday ME, Haley KJ. Angiogenic growth factors in the pathophysiology of a murine model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2002;283:L585-595.
    19.Jesmin S, Zaedi S, Islam AM, Sultana SN, Iwashima Y, Wada T, Yamaguchi N, Hiroe M, Gando S. Time-dependent alterations of vegf and its signaling molecules in acute lung injury in a rat model of sepsis. Inflammation 2012;35:484-500.
    20.Chang CC, Chiu HF, Wu YS, Li YC, Tsai ML, Shen CK, Yang CY. The induction of vascular endothelial growth factor by ultrafine carbon black contributes to the increase of alveolar-capillary permeability. Environ Health Perspect 2005;113:454-460.
    21.Choi WI, Quinn DA, Park KM, Moufarrej RK, Jafari B, Syrkina O, Bonventre JV, Hales CA. Systemic microvascular leak in an in vivo rat model of ventilator-induced lung injury. Am J Respir Crit Care Med 2003;167:1627-1632.
    22.Mura M, dos Santos CC, Stewart D, Liu M. Vascular endothelial growth factor and related molecules in acute lung injury. J Appl Physiol 2004;97:1605-1617.
    23.Mazzoni MC, Schmid-Schonbein GW. Mechanisms and consequences of cell activation in the microcirculation. Cardiovasc Res 1996;32:709-719.
    24.Doerschuk CM, Beyers N, Coxson HO, Wiggs B, Hogg JC. Comparison of neutrophil and capillary diameters and their relation to neutrophil sequestration in the lung. J Appl Physiol 1993;74:3040-3045.
    25.Abraham E. Neutrophils and acute lung injury. Crit Care Med 2003;31:S195-199.
    26.Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA. Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2006;291:L1191-1198.
    27.Imanaka H, Shimaoka M, Matsuura N, Nishimura M, Ohta N, Kiyono H. Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation, and tgf-beta 1 mrna upregulation in rat lungs. Anesth Analg 2001;92:428-436.
    28.Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-964.
    29.Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003;19:71-82.
    30.Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science 2010;327:656-661.
    31.O'Dea KP, Young AJ, Yamamoto H, Robotham JL, Brennan FM, Takata M. Lung-marginated monocytes modulate pulmonary microvascular injury during early endotoxemia. American journal of respiratory and critical care medicine 2005;172:1119-1127.
    32.Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994;174:83-93.
    33.Wilson MR, O'Dea KP, Zhang D, Shearman AD, van Rooijen N, Takata M. Role of lung-marginated monocytes in an in vivo mouse model of ventilator-induced lung injury. Am J Respir Crit Care Med 2009;179:914-922.
    34.Dhaliwal K, Scholefield E, Ferenbach D, Gibbons M, Duffin R, Dorward DA, Morris AC, Humphries D, MacKinnon A, Wilkinson TS, Wallace WA, van Rooijen N, Mack M, Rossi AG, Davidson DJ, Hirani N, Hughes J, Haslett C, Simpson AJ. Monocytes control second-phase neutrophil emigration in established lipopolysaccharide-induced murine lung injury. American journal of respiratory and critical care medicine 2012;186:514-524.
    35.Brinkmann A, Wolf CF, Berger D, Kneitinger E, Neumeister B, Buchler M, Radermacher P, Seeling W, Georgieff M. Perioperative endotoxemia and bacterial translocation during major abdominal surgery: Evidence for the protective effect of endogenous prostacyclin? Crit Care Med 1996;24:1293-1301.
    36.Bouter H, Schippers EF, Luelmo SA, Versteegh MI, Ros P, Guiot HF, Frolich M, van Dissel JT. No effect of preoperative selective gut decontamination on endotoxemia and cytokine activation during cardiopulmonary bypass: A randomized, placebo-controlled study. Crit Care Med 2002;30:38-43.
    37.Lang JD, Hickman-Davis JM. One-hit, two-hit . . . Is there really any benefit? Clin Exp Immunol 2005;141:211-214.
    38.Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Floros J, Gimbrone MA, Jr., Hoffman E, Hubmayr RD, Leppert M, Matalon S, Munford R, Parsons P, Slutsky AS, Tracey KJ, Ward P, Gail DB, Harabin AL. Future research directions in acute lung injury: Summary of a national heart, lung, and blood institute working group. American journal of respiratory and critical care medicine 2003;167:1027-1035.
    39.O'Dea KP, Wilson MR, Dokpesi JO, Wakabayashi K, Tatton L, van Rooijen N, Takata M. Mobilization and margination of bone marrow gr-1high monocytes during subclinical endotoxemia predisposes the lungs toward acute injury. J Immunol 2009;182:1155-1166.
    40.Ermert L, Ermert M, Merkle M, Goppelt-Struebe M, Duncker HR, Grimminger F, Seeger W. Rat pulmonary cyclooxygenase-2 expression in response to endotoxin challenge: Differential regulation in the various types of cells in the lung. The American journal of pathology 2000;156:1275-1287.
    41.Gust R, Kozlowski JK, Stephenson AH, Schuster DP. Role of cyclooxygenase-2 in oleic acid-induced acute lung injury. American journal of respiratory and critical care medicine 1999;160:1165-1170.

    無法下載圖示 校內:2016-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE