| 研究生: |
何信葳 Ho, Hsin-Wei |
|---|---|
| 論文名稱: |
新型三維六面體元素之研究 The Study of The New Three-Dimensional Hexahedral Elements |
| 指導教授: |
何旭彬
Ho, Shi-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 疊代法 、有限元素法 、三維六面體元素 、靜態縮減法 |
| 外文關鍵詞: | three-dimensional hexahedral elements, finite element method, static condensation, iterative method |
| 相關次數: | 點閱:132 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一種新類型的三維六面體元素,發現其與傳統常用的一階8節點元素、二階Serendipity 20節點元素及二階Lagrange 27節點元素比較,其精確度較準且求解時間較短。
本文中的新型元素在一階至三階的Serendipity元素內部,增加額外的節點,使得在元素的邊上仍為一階至三階內插函數,但元素的內部為更高階的內插函數,因而提高了元素的精確度。由於這些額外增加的內部節點,不與其他元素相接,故在元素勁度矩陣形成後,這些內部節點所對應的矩陣成分,即是整體勁度矩陣的最後矩陣成分。因此在元素勁度矩陣形成後,即可使用高斯消去法將內部節點對應的行、列先消去。在組成整體勁度矩陣求解時,本研究發現,疊代法比高斯消去法快很多。此新型元素所形成的整體勁度矩陣,所需疊代次數較少,故求解時間也較短。
在實例測試中,與各階Serendipity元素相比,發現一階內部含1節點新元素誤差相對下降38%,計算速度快1%;二階內部含8節點新元素誤差相對下降38%,計算速度快20%;三階內部含27節點新元素相對誤差下降69%,計算速度快35%。
A family of new three-dimensional hexahedral elements is proposed in this thesis. When compared with the linear 8 nodes element, quadratic Serendipity 20 nodes element, and quadratic Lagrange 27 nodes element, these new elements spent less computational time and got less approximation errors.
The idea for these new elements is using extra nodes in the interior of the hexahedral elements to get high order interpolation functions in the elements. When the element equations are formed, the equations corresponding to these interior degrees of freedom can be eliminated by static condensation. When global system equations are solved, we found that iterative method is much faster than the Gauss elimination method. When new elements are used, less iterative number is needed compared Serendipity elements and Lagrange elements.
Compared with the Serendipity elements, the error of the linear new element drops 38% and its computational time drops 1%. The error of the quadratic new element drops 38% and its computational time drops 20%. The error of the cubic new element drops 69% and its computational time drops 35%.
[1] D. L. Logon, “ A First Course in the Finite Element Method “, PWS-KENT, Boston, 1992.
[2] R. L. Taylor, P. J. Beresford, E. L. Wilson, “A non-conforming element for stress analysis”, International Journal for Numerical Methods in Engineering, Vol.10, 1211-1219, 1976.
[3] H. A. Taiebat, J. P. Carter, “Three-dimensional non-conforming elements”, Department of Civil Engineering Research Report R808, The university of Sydney, Australia, 2001.
[4] 蔡文傑, ”二維有限元素法之收斂性探討”, 國立成功大學機械工程研究所碩士論文, 2001.
[5] 林源富, ”運用高階有限元素解破裂點尖端應力強度因子”, 國立成功大學機械工程研究所碩士論文, 2002.
[6] 葉彥良, “特徵向量展開法與縮減矩陣法解多重負荷問題之探討” 國立成功大學機械工程研究所碩士論文, 2001.
[7] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Dongarra, V. Eijkhout, R. Pozo, C. Rommel, H. van der Vorst, “Templates for the Solution of Linear System: Building Blocks for Iterative Method”, SIAM, 1994.
[8] 陳明凱, ”平行有限元素法之負載平衡探討”, 國立成功大學機械工程研究所碩士論文, 2001.
[9] J. N. Reddy, ”An Introduction to the Finite Element Method ”, 2nd edition, McGraw-Hill, Singapore, 1993.
[10] L. N. Trefethen, D. Bau, “Numerical Linear Algebra”, SIAM, USA, 1997.
[11] O. C. Zienkiewicz, R. L. Taylor, “The Finite Element Method”, 4th edition, McGraw-Hill, Singapore, 1989.
[12] H. Jean-Francois, B. Klaus-Jurgen, “On higher-order-accuracy points in isoparametric finite element analysis and an application to error assessment”, Computers and Structure 79, 1275-1285, 2001.
[13] A. P. Boresi, K. P. Chong, “Elasticity in Engineering Mechanics”, 2nd Edition, John Wiley & Sons, USA, 2000.
[14] D. S. Burnett, “Finite Element Analysis From Concepts to
Applications”, Addison-Wesley, Canada, 1987.
[15] H. T. Rathod, S. Kilari, “General complete Lagrange family for the cube in the finite element interpolations”, Computer Methods in Applied Mechanics and Engineering, 295-344, 2000.