簡易檢索 / 詳目顯示

研究生: 杜方泰
Duh, Fang-Tay
論文名稱: 纖維複材疊層板在雙軸載重下之非線性破壞分析
Nonlinear Failure Analysis Model for Fiber-reinforced Composite Laminate Under Biaxial Loads
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 134
中文關鍵詞: 疊層板
外文關鍵詞: Composite, Laminate, Finite element
相關次數: 點閱:81下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究當中,將使用一套非線性破壞分析模式,針對纖維加強複合材料疊層板承受雙軸載重作用下,進行材料之破壞預測及分析探討。此非線性破壞分析模式包含三部分:材料破壞前的非線性組成律、預測破壞時機的混合破壞準則以及後破壞分析模式。
    對於複材單層板破壞前之非線性行為模擬,係假設材料在軸向及側向均為彈性-塑性行為,而面內剪力則使用非定值剪力參數來描述之。至於破壞時機之判斷,則使用了結合Tsai-Wu破壞準則及最大應力準則之混合破壞準則作依據。最後,在後破壞行為中,對單層板軸向及剪力之行為假設成脆性破壞模式,而側向則採用逐降模式模擬之。
    最後,對於該非線性破壞分析模式所預測之結果,將分別與實驗數據及其他分析模式之預測結果做比較,以證明纖維加強複合材料疊層板在雙軸載重作用下,本文所建議之分析模式較為精確且合理。

    None

    章節 頁次 摘要............................................................ Ⅰ 誌謝............................................................ Ⅱ 目錄............................................................. Ⅲ 圖目錄........................................................... Ⅴ 第一章 緒論..................................................... 1 1.1 大綱介紹................................................ 2 1.2 研究主題及領域.......................................... 5 第二章 複材疊層板之分析模式................................ 8 2.1 前言..................................................8 2.2 正向單層板的線性應力應變關係..................... 9 2.3 正向單層板的非線性組成模式........................ 11 2.4 單層板在任意座標軸上的非線性應力應變關係........ 12 第三章 破壞準則之回顧....................................... 15 3.1 前言................................................... 15 3.2 破壞準則...............................................15 3.3 極限理論...............................................16 3.3.1 最大應力理論...................................16 3.3.2 最大應變理論...................................17 3.4 應變能理論............................................20 3.4.1 von Mises等向降伏準則.......................20 3.4.2 Tsai-Hill準則...................................21 3.5 多項式理論............................................22 3.5.1 Hoffman理論...................................23 3.5.2 Tsai-Wu破壞理論..............................24 3.6 直接模式運算理論..................................27 3.6.1 Hashin-Rotem破壞準則..........................27 3.6.2 Hashin破壞準則.................................29 3.6.3 Lee破壞準則....................................30 3.6.4 Chang破壞準則.................................32 3.6.5 Edge破壞準則...................................33 第四章 建議之非線性破壞分析模式............................. 36 4.1 非線性破壞分析模式之描述............................36 4.2 非線性組成律..........................................36 4.3 混合破壞準則..........................................38 4.4 後破壞模式............................................39 4.5 正規化應力及破壞貢獻度..............................41 4.6 複材疊層板之控制方程式..............................42 第五章 數值分析之結果.........................................44 5.1 簡介...................................................44 5.2 數值分析模型與方法之描述............................45 5.3 材料之基本性質.......................................46 5.4 非線性破壞分析模式之確認............................47 5.5 分析內容概述..........................................48 5.6 對稱角交型疊層板.....................................49 5.6.1 雙軸壓力載重...................................49 5.6.2 雙軸拉-壓載重..................................54 5.6.3 破壞包絡線.....................................56 5.7 對稱正交型疊層板.....................................57 5.7.1 雙軸壓力載重...................................57 5.7.2 雙軸拉-壓載重..................................62 5.7.3 破壞包絡線.....................................64 第六章 結論與建議.............................................66 6.1 結論...................................................66 6.2 建議...................................................69 參考文獻.........................................................70 附圖..............................................................74 附錄.............................................................121 附錄A Fortran Subroutine-Mixed Failure Criterion................122 附錄B ABAQUS Program Input File............................132

    [1] Azzi, V. D. and Tsai, S. W., "Anisotropic Strength of Composite," Exp. Mech., Vol.5, pp. 283-288, 1965.
    [2] Allen, H., Harris, C. E. and Groves, S. E., "A Thermomechanical Constitutive Theory for Elastic Composites with Distributed Damage-I.Theoretical Development", Int. J. Solids Structures, Vol.23,pp.1301-1318,1987.
    [3] Al-Salehi,F. A. R.,Al-Hassani, S. T. S. and Hinton,M. J., "An Experimental Investigation into the Strength of Angle Ply GRP Tubes under High Rate of Loading", J. Composite Materials, Vol.23, pp.188-303, 1989.
    [4] Chang, F.-K. and Chang, K.-Y., "A Progressive Damage Model for Laminated Composites Containing Stress Concertrations", J. Compos. Mater., Vol.21, pp.834-855, 1987.
    [5] Chang, F.-K. and Lessard, L. B., "Damage Tolerance of Laminated Composite Containing an Open Hole and Subjected to Compressive Loadings: Part I-Analysis", Journal of Composite Materials, Vol.25, pp.2-43, 1991.
    [6] Ellyin, F., Carroll, M., Kujawski, D. and Chiu, A. S., " The Behavior of Multidirectional Filament Wound Fibreglass/Epoxy Tubulars under Biaxial Loading", Composites Part A, Vol.28A, pp.781-790, 1997.
    [7] Edge, E. C., "Final Report on P.V. Funded Portion of CFC Basic Technology Programme", Bae Report SOR(P)177, October 1987, with Addendum 1, February, 1989.
    [8] Edge, E. C., "Stress Based Grant-Sanders Method for Predicting Failure of Composite Laminates", Composites Science and Technology, Vol.58(7), pp.1033-1041, 1998.
    [9] Eckold, G. C., "Failure Criteria for Use in the Design Environment", Composites Science and Technology, Vol.58(7), pp.1095-1105, 1998.
    [10] Griffin O. H., Kamat, M. P. and Herakovich, C. T., " Three-Dimensional Inelastic Finite Element Analysis of Laminated Composites", Journal of Composite Materials, Vol.15, pp.543-560, 1981.
    [11] Gotsis, P. K., Chamis C. C. and Minnetyan L., "Prediction of Composite Laminate Fracture: Micromechanics and Progressive Fracture", Composites Science and Technology, Vol.58(7), pp.1137-1149, 1998.
    [12] Hill, R., "The Mathematical Theory of Plasticity", Oxford University Press, London, 1950.
    [13] Hoffman, O., "The Brittle Strength of Orthotropic Material", Journal of Composite Materials, Vol.1, pp.200-206, 1967.
    [14] Hahn, H. T., "Nonlinear Behavior of Laminated Composites", Journal of Composite Materials, Vol.7, pp.257-271, 1973.
    [15] Hahn, H. T. and Tsai, S. W., "Nonlinear Elastic Behavior of Unidirectional Composite Laminates", Journal of Composite Materials, Vol.7, pp.102-118, 1973.
    [16] Hashin, Z. and Rotem, A., "A Fatigue Failure Criterion for Fiber Reinforced Materials", J. Compos. Mater., Vol.7, pp.448-464, 1973.
    [17] Hull, D., Legg, M. J. and Spencer, B., "Failure of Glass/Polyster Filament Wound Pipe", Composites, Vol.9(1), pp.17-24, 1978.
    [18] Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites", J. Appl. Mech., Vol.47, pp.329-334, 1980.
    [19] Hu, H.-T., "Influence of In-plane Shear Nonlinearity on Buckling and Postbuckling Responses of Composite Laminate Plates and Shells", Journal of Composite Materials, Vol.27, pp.138-151, 1993.
    [20] Hart-Smith, L. J., "Predictions of the Original and Truncated Maximum-Strain Failure Modes for Certain Fibrous Composite Laminates", Composites Science and Technology, Vol.58(7), pp.1151-1178, 1998.
    [21] Hibbitt, Karlsson & Sorensen, Inc., ABAQUS Theory Manual and User Manual, Version 5.8, Providence, Rhode Island, 2000.
    [22] Kenaga D., Doyle, J. F. and Sun, C. T., "The Characterization of Boron/Aluminum Composite in the Nonlinear Range as an Orthotropic Elastic-Plastic Material", Journal of Composite Materials, Vol.21, pp.516-531, 1987.
    [23] Lee, J. D., "Three Dimensional Finite Element Analysis of Damage Accumulation in Composite Laminate", Computers & Structures, Vol.15, pp.335-350, 1982.
    [24] Liu, K.-S. and Tsai, S. W., "A Progressive Quadratic Failure Criterion of a Laminate", Composites Science and Technology, Vol.58(7), pp.1023-1032, 1998.
    [25] McCartney, L. N., "Predicting Transverse Crack Formation in Cross-Ply Laminate", Composites Science and Technology, Vol.58(7), pp.1069-1081, 1998.
    [26] Narayanaswami, R. and Adelman, H. M., "Evaluation of the Tensor Polynomial and Hoffman Strength Theories for Composite Material", Journal of Composite Materials, Vol.11, pp.366-377, 1977.
    [27] Petit, P. H. and Waddoups, M. E., "A Method of Predicting the Nonlinear Behavior of Laminated Composites", Journal of Composite Materials, Vol.3, pp.2-19, 1969.
    [28] Rotem, A. and Hashin, Z., "Failure Modes of Angle Ply Laminates", J. Compos. Mater., Vol.9, pp.191-206, 1975.
    [29] Rotem, A. and Nelson, H. G., "Fatigue Behavior of Graphite-Epoxy Laminate at Elevated Temperatures", ASTM STP 723, pp.152-173, 1981
    [30] Rowlands, R. E., "Strength (Failure) Theories and Their Experimental Correlation", in: G. C. Sih and A. M. Skudra (eds.), Failure Mechanics of Composites, Elsevier, Amsterdam, pp.71-125, 1985.
    [31] Rotem, A., "Prediction of Laminate Failure with the Rotem Failure Criterion", Composites Science and Technology, Vol.58(7), pp.1083-1094, 1998.
    [32] Soden, P. D., Leadbetter, D., Griggs, P. R. and Eckold, G. C., "The Strength of a Filament Wound Composite under Biaxial Loading", Composites, Vol.9, pp.247-250, 1978.
    [33] Sanders, R. C. and Grant, P., "The Strength of Laminated Plates under In-plane Loading", BAe Report SOR(P)130, January 1982.
    [34] Soden, P. D., Kitching, R. and Tse, P. C., "Experimental Failure Stresses for Filament Wound Glass Fibre Reinforced Plastic Tubes under Biaxial Loads", Composites, Vol.20(2), pp.125-135, 1989.
    [35] Sun, C. T. and Chen, J. L., "A Simple Flow Rule for Characterizing Nonlinear Behavior of Fiber Composite", Journal of Composite Materials, Vol.23, pp.1009-1020, 1989.
    [36] Soden, P. D., Kitching, R., Tse, P. C., Tsavalas, Y. and Hinton, M. J., "Influence of Winding Angle on the Strength and Deformation of Filament-Wound Composite Tubes Subjected to Uniaxial and Biaxial Loads", Composites Science and Technology, Vol.46, pp.363-378, 1993.
    [37] Sun, C. T. and Tao, J. X., "Prediction of Failure Envelopes and Stress/Strain Behaviour of Composite Laminates", Composites Science and Technology, Vol.58(7), pp.1125-1136, 1998.
    [38] Soden, P. D., Hinton, M. J. and Kaddour, A. S., "Laminate Properties Lay-up Configurations and Conditions for a Range of Fiber-Reinforced Composite Laminates", Composites Science and Technology, Vol.58(7), pp.1011-1022, 1998.
    [39] Tsai, S. W. and Wu, E. M., "A General Theory of Strength for Anisotropic Materials", Journal of Composite Materials, Vol.5, pp.58-80, 1971.
    [40] Vaziri, R., Olson, M. D. and Anderson, D. L., "A Plasticity-Based Constitutive Model for Fibre-Reinforced Composite Laminates", Journal of Composite Materials, Vol.25, pp.512-535, 1991.
    [41] Wolfe, W. E. and Butalia, T. S., "A Strain-Energy Based Failure Criterion for Non-linear Analysis of Composite Laminates Subjected to Biaxial Loading", Composites Science and Technology, Vol.58(7), pp.1107-1124, 1998.
    [42] Zinoviev, P., Grigoriev, S. V., Labedeva, O. V. and Tairova, L. R., "Strength of Multilayered Composites under Plane Stress State", Composites Science and Technology, Vol.58(7), pp.1209-1223, 1998.
    [43] 林文賓,"纖維複材疊層板在單軸及雙軸張力載重下之非線性破壞分析",國立成功大學土木工程學系,博士論文,中華民國九十年十二月。
    [44] 柯龍聖,"纖維複材疊層板在單軸壓力載重下之非線性破壞分析",國立成功大學土木工程學系,碩士論文,中華民國九十一年十二月。

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE