簡易檢索 / 詳目顯示

研究生: 陳冠甫
Chen, Kuan-Fu
論文名稱: 具鍍鋁薄膜矽基材料之研磨製程特徵研究
Investigation of Process Characteristics in Grinding of Silicon Substrate Coated with Aluminum Thin Film
指導教授: 王俊志
Wang, Jiunn-Jyh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 84
中文關鍵詞: 臨界切深雙層複合材料磨削最大切屑厚度
外文關鍵詞: critical depth of cut, max. chip thickness, grinding, bilayer composites
相關次數: 點閱:132下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要分析具鋁薄膜之矽晶圓在磨削加工時的特徵且根據實驗結果找出一套經驗公式,此公式可以預測在不同鍍膜厚度下比磨削能與最大切屑厚度的關係。為了有效控制加工時的實際切深本文同時結合工件剛性、砂輪結合劑性質與機台剛性推導出一套可以成功預測實際切深與設定切深之間差異的模式,在本文中採用乾式平面研磨的方式,利用高號數之鑽石砂輪針對矽晶圓以不同結合劑做驗證。
    針對具鋁薄膜之矽晶圓在磨削加工時的分析最主要著重於探討其比磨削能、磨削力、臨界切深、徑向磨削係數與表面形貌之特徵,結果發現鋁薄膜越厚時,比磨削能與磨削力皆呈現越大的趨勢,而臨界切深和徑向磨削係數則相反。

    This thesis analyzes characteristics of silicon substrate coated with aluminum thin film in grinding process and an empirical formula facilitating the prediction the specific grinding energy under varying thickness of maximum undeformed chip and aluminum thin film was developed based on the experimental results. For controlling the actual cutting depth more precisely, this thesis developed a model considering work piece hardness, bonder material of the wheel and machine stiffness. The model can predict the difference between nominal cutting depth and actual cutting depth. It was verified by experiments with different bond material of the wheel in vertical grinding with silicon.

    Analysis of characteristics of silicon substrate coated with aluminum thin film in grinding process mainly focused on specific grinding energy, grinding force, critical cutting depth, ratio of normal and tangential grinding forces, and surface integrity, the experimental results show that thicker aluminum film can cause larger specific grinding energy and grinding force, but smaller critical cutting depth and ratio of normal and tangential grinding forces.

    總目錄 摘要………………………………………………………………………I Abstract ………………………………………………………………….II 誌謝……………………………………………………………………..III 總目錄…………………………………………………………………..IV 表目錄………………………………………………………………...VIII 圖目錄…………………………………………………………………...X 符號說明……………………………………………………………...XIII 第一章 緒論 1 1.1前言 1 1.2 研究動機及目的 2 1.3 文獻回顧 3 1.3.1 磨削系統機台剛性 3 1.3.2硬脆材料之加工 5 1.4 研究方法及範疇 8 第二章 基本磨削力模式與磨削幾何 9 2.1 前言 9 2.2 砂輪表面形貌 9 2.3 磨削過程與磨削力 11 2.4 未變形切屑厚度(Undeformed Chip Thickness) 13 2.5 比磨削能 及徑向磨削係數 15 第三章 磨削系統剛性 17 3.1 前言 17 3.2結合主軸剛性與赫茲接觸力之模式 18 第四章 磨削加工具鋁薄膜矽晶圓之解析模式 21 4.1 前言 21 4.2 硬脆材料脆性破壞預測模式之建立 22 4.2.1 Critical Depth of Cut臨界切深模式 22 4.2.2 考慮磨粒切深機率密度之脆性破壞定義 24 4.3 具鋁薄膜之矽晶圓脆性破壞預測模式之建立 25 第五章 實驗方法與結果討論 30 5.1 實驗目的 30 5.2 實驗材料 30 5.2.1 砂輪規格說明 32 5.3 實驗設備及儀器 35 5.3.1 磨削實驗使用之磨床規格 35 5.3.2 實驗量測儀器及其規格 36 5.4 實驗方法說明 37 5.4.1 實驗儀器架設 37 5.4.2 實驗前準備工作 38 5.4.3 考慮砂輪磨粒切深分布之脆性破壞實驗流程 41 5.4.4 砂輪偏擺的量測 42 5.5 磨削系統剛性實驗之結果與討論 44 5.5.1 主軸靜態剛性實驗 44 5.5.2 加入主軸剛性之赫茲力模式驗證實驗 46 5.6考慮砂輪磨粒切深機率密度之脆性破壞預測模式實驗 50 5.6.1 矽晶圓之磨削力、比磨削能及磨削係數 51 5.6.2 矽晶圓被加工表面形貌觀察 53 5.7具鋁薄膜之矽晶圓加工特性實驗結果與討論 59 5.7.1 磨削力、比磨削能及磨削係數 59 5.7.2 具鋁薄膜之矽晶圓加工表面形貌觀察 65 5.7.3 順逆磨之比磨削能比較 69 5.7.4 順逆磨之表面形貌觀察比較 72 5.7.5 實驗值與預測值之比較 75 第六章 結論與建議 77 6.1結論 77 6.2建議 78 參考文獻 80 自述 84

    1. R. Snoeys, D. Brown, “Dominating parameters in grinding wheel and workpiece regenerative chatter,” Proceeding Of the 10th International Machine Tool Design and Research Conference, pp. 325-348, 1969.
    2. B. Bartalucci, G.G. Lisini, “Grinding process instability,” Transactions of the ASME Journal of Engineering for Industry. Vol. 91, pp.597-606, 1969.
    3. I. Inasaki, S. Yonetsu, “Regenerative chatter in grinding,” in: Proc. of the 18th Int. Mach.Tool Des. and Res.Conf., Oxford, pp. 423-429, 1977.
    4. F. Hashimoto, J. Yoshioka, M. Miyashita, H. Sato, “ Sequential estimation of growth rate of chatter vibration in grinding process,” Annals of the CIRP, Vol. 33(1), pp. 259-263, 1984.
    5. J. C. Ramos, J. Vinolas, F.J. Nieto, “A simplified methodology to determine the cutting stiffness and the contact stiffness in the plunge grinding process,” International Journal of Machine Tools and Manufacture, pp. 33-49, 2001.
    6. M. H. Miller, T. A. Dow, “Influence of the grinding wheel in the ductile grinding of brittle materials: development and verification of kinematic based model,” Transcations of the ASME Journal of Manufacturing Science and Engineering, Vol. 121, pp.638-646,1999
    7. R. F. King, D. Tabor, “The Strength Properties and Frictional Behaviour of Brittle Solids,” Proc. of the Roy. Soc. London, A223, p. 225, 1954.
    8. M. Huerta, S. Malkin, “Grinding of Glass: The Mechanics of the Process,” Transcations of the ASME Journal of Engineering for Industry, pp.459-467, 1976.
    9. M. Huerta, S. Malkin, “Grinding of Glass: Surface Structure and Fracture Strength,” Transcations of the ASME Journal of Engineering for Industry, pp.468-473, 1976.
    10. B. R. Lawn, T. Jensen, A. Aurora, “Brittleness as an Indentation Size Effects,” Journal of Material Science Letter, Vol. 11, p.575, 1976.
    11. D. B. Marshall, B. R. Lawn, “Indentation of Brittle Materials,” Microindentation Techniques in Materials Science and Engineering ASTM STP 889, Philadelphia, pp.26-46, 1986.
    12. T. G. Bifano and T. A. Dow, “Ductile-Regime Grinding: A New Technology for Machining Brittle Materials,” Transcations of the ASME Journal of Engineering for Industry, pp.184-189, Vol. 113, 1991.
    13. Chandrasekar and Sathyanarayanan, “An investigation into the mechanics of diamond grinding of brittle materials,” 15th North American Manufacturing Research Conference Proceedings, Vol.2, Manufacturing Technology Review, pp.499-505, 1987.
    14. P. N. Blake, R. O. Scattergood, “Ductile-Regime Machining of Germanium and Silicon,” Journal of the American Ceramic Society, Vol.73, pp.949-957, 1990.
    15. J. E. Mayer Jr., G. P. Fang, “Effect of Grinding Parameters on Surface Finish of Ground Ceramics,” Annals of CIRP, Vol. 44(1), pp.249-282, 1995.
    16. T. W. Hwang, S. Malkin, “Grinding Mechanisms for Ceramics,” Annals of the CIRP, Vol. 45(2), pp.569-580,1996.
    17. T. W. Hwang, S. Malkin, “Grinding Mechanisms and Energy Balance for Ceramics,” Transcations of the ASME Journal of Manufacturing Science and Engineering, Vol. 121, pp.623-631,1999.
    18. X. Sun, D. J. Stephenson, “An investigation into parallel and cross grinding of BK7 glass,” Precision Engineering, Vol.30, pp.145-153, 2006.
    19. J. H. Liu, Z. J. Pei, “Grinding Wheels for Manufacturing of Silicon Wafers: A literature Review,” International Journal of Machine Tools and Manufacture, pp. 1-13, 2007.
    20. A. C. Fischer-Cripps, B. R. Lawn, “Stress analysis of elastic-plastic contact damage in ceramic coatings on metal substrates,” Journal of the American Ceramic Society, Vol.79, pp.2619-2625, 1996.
    21. B. R. Lawn, Y. Deng, P. Miranda, A. Pajares, H. Chai, D. K. Kim, “Overview: damage in brittle layer structures from concentrated loads,” Journal of Materials Research Society, Vol.17, pp.3019-3036, 2002.
    22. P. Miranda, A. Pajares, “Designing damage-resistant brittle-coating structures: bilayers,” Acta Materialia, Vol.51, pp.4347-4356, 2003.
    23. D. Beegan, S. Chowdhury, “Work of indentation methods for determining copper film hardness,” Surface and Coatings Technology, Vol.192, pp.57-63, 2005.
    24. D. Beegan, S. Chowdhury, “Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidized silicon substrates,” Surface and Coatings Technology, Vol.201, pp.5804-5808, 2007.
    25. R. J. Hand, B. Ellis, “Epoxy based coatings on glass: strengthening mechanisms,” Journal of Non-Crystalline Solids, Vol.315, pp.276-287, 2003.
    26. H. Chai, B. R. Lawn, “Failure of brittle layers on polymeric substrates from Vickers indentation,” Scripta Materialia Vol.55, pp.335-338, 2006.
    27. H. Tsuwa, “An investigation of grinding wheel cutting edges,” ASME Journal of Engineering for Industry, pp371, NOV., 1964.
    28. S. Malkin, “Grinding technology:theory and applications of machining with abrasives,” Tohn Wiley and Sons, 1989.
    29. K. V. Kumar, M. Cozminca, Y. Tanaka, M. C. Shaw, “A new method of studying the performance of grinding wheels,” Transcations of the ASME Journal of Engineering for Industry, Vol. 102, pp.80-84, 1980.
    30. W. Lortz, “A model of the cutting mechanism in grinding,” Wear, Vol. 53, pp. 115-128, 1979.
    31. M. Younis, M. M. Sadek, and T. EI-Wardani, “A New Approach to Development of a Grinding Force Model,” Transcations of the ASME Journal of Engineering for Industry, Vol.109, pp. 306-313, 1987.
    32. S. Malkin, “Selection of Operation Parameter in Surface Grinding of Steels,” Transcations of the ASME Journal of Engineering for Industry, pp. 56-62, 1976.
    33. M. C. Shaw, “Principles of Abrasive Processing,” Oxford, New York, 1996.
    34. 中國砂輪編, 精密研磨加工技術概說, 中國砂輪公司, 1990.
    35. R. L. Hecker, S. Y. Liang, “Predictive modeling if surface roughness in grinding,” International Journal of Machine Tools and Manufacture, Vol. 43, pp. 755-761, 2003.
    36. R. L. Hecker, S. Y. Liang, “Grinding force and power modeling based on chip thickness analysis,” International Journal of Adv Manufacture Technology, Vol. 33, pp. 449-459, 2007.
    37. J. J. Wang and Y. Y. Liao, “Critical Depth of Cut and Specific Cutting Energy of a Microscribing Process for Hard and Brittle Materials,” Transcations of the ASME Journal of Engineering Materials and Technology, Vol.130, No.2, 2008.
    38. I. Inasaki and S. Yonetsu, “Regenerative chatter in grinding,”in Proc. of the 18th Int. Mach. Tool Des. And Res.Conf., Oxford, pp. 423-429, 1977.
    39. 林建良,考慮磨削加工參數與機台剛性之工件表面粗糙度解析模式建立, 國立成功大學碩士論文, 94年
    40. 許芳明,硬脆材料微銑削加工特性之探討, 國立成功大學碩士論文, 95年
    41. 蘇偉碩,磨削參數於切割砂輪徑向磨秏與側向磨秏之影響, 國立成功大學碩士論文, 95年
    42. 張煌權,蘇偉碩,王俊志,“砂輪係數檢驗技術之建立與驗證結案報告”國立成功大學,2007

    下載圖示 校內:2009-08-06公開
    校外:2009-08-06公開
    QR CODE