| 研究生: |
鄭文欣 Cheng, Wen-Hsin |
|---|---|
| 論文名稱: |
鋁擠型桿件之斷面性質與接合形式研究分析 A Research in Section Properties and Joint Conditions for Aluminum Extrusion Members |
| 指導教授: |
姚昭智
Yao, George C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 慣性矩 、撓曲剛度 、剪力變形 、非完全固接 、跨深比 、有限元素分析 |
| 外文關鍵詞: | Moment of inertia, flexural stiffness, shear deflection, semi-rigid, span to depth ratio, finite element analysis |
| 相關次數: | 點閱:88 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因受限於製造與結合構法,鋁擠型桿件的斷面通常由複雜的形狀組合而成,與一般結構鋼的簡單造型不同,本研究便探討一組鋁構架STK的結構受力變形與應力特性。本研究分析之STK系統有部分鋁擠型桿件的跨深比較為特殊,遠小於一般鋼結構系統,在受力時可能產生大量剪力變形使桿件的真實剛度小於由斷面性質計算得來的理論剛度,因此透過材料試驗與電腦模擬,分析不同鋁擠型桿件的斷面剪力變形之影響,並提出較易計算的方式,使讀者不需透過結構設計軟體即可計算鋁擠型桿件的真實剛度。
STK系統的另一特性是鋁擠型桿件的接合方式,桿件之間以螺栓接合,而未以銲接連結,完全由螺栓進行力的傳遞,接合處的力學行為將介於剛接與鉸接之間。本研究以電腦模擬可能的接合形式並分析相關因子,得到折減桿件剛度的回歸式,再以設定彈簧的方式將接合處的剛接行為折減為非完全固接,使STK系統能在更接近真實的情況下進行結構分析。
The shapes of aluminum extrusion members are complex because of their manufacturing process and joining conditions. The object of research is an aluminum framework called STK and this research focuses on its deformation and characteristics of stress. Aluminum extrusion members in the STK have span to depth ratios less than those of steel structures. This characteristic can generate more shear deflections when aluminum extrusion members are loaded and their stiffness will be less than the stiffness calculated by the flexural section properties only. This research analyzes different cross sections by material testing and computer simulation, providing an easier way for calculating the flexural stiffness in real without using structural analysis software.
The other characteristic of STK is joint condition. There are bolted joints between aluminum extrusion members without any welds and the behavior is between rigid and semi-rigid. This research simulates possible joint conditions and analyzes the related factors, regression analysis to conclude on an equation and determine spring constant to decrease the flexural stiffness.
1.李森枏 (2006) <SAP2000入門與工程上之應用> ,科技圖書出版社。
2.清田清司,高須治男 (1978) 土木建築結構力學設計手冊,文笙書局。
3.Gere, James M. (2001) Mechanics of Materials, 194-195. Stanford University, USA.
4.Wang, C. M., Reddy, J. N., Lee, K. H. (2000) SHEAR DEFORMABLE BEAMS AND PLATES ,Relationships with Classical Solutions, 9-28. Elsevier Science Ltd.
5.Cowper, G. (1966) The shear coefficient in Timoshenko’s beam theory. Journal of Applied Mechanics 33 (5), 335–340.
6.Kissell, J. Randolph, Ferry Robert L. (2002) Aluminum Structures, 31-33. John Wiley & Sons, Inc., New York.
7.Celebi, M. (1996) Comparison of damping in buildings under low-amplitude and strong motions. Journal of Wind Engineering and Industrial Aerodynamics, 59:2-3, 309-323.