簡易檢索 / 詳目顯示

研究生: 洪美玲
Hung, Meei-Ling
論文名稱: 強健滑動模式控制應用於混沌系統同步之研究
Synchronization of Chaotic Systems: Robust Sliding Mode Control Approach
指導教授: 廖德祿
Liao, Teh-Lu
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 66
中文關鍵詞: 同步滑動模式控制匹配/非匹配線性plus-cubic 阻尼死區非線性輸入未知系統參數外部擾動李亞普諾夫穩定性定理
外文關鍵詞: Chaotic systems, Synchronization, Sliding mode control (SMC), Dead-zone nonlinear, Robust control, Adaptive control, Lyapunov stability theory
相關次數: 點閱:131下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中主要利用滑動模式控制理論,探討混沌系統同步化之問
    題。討論內容包含了一類混沌系統中具匹配/非匹配擾動、線性plus-cubic
    阻尼、死區非線性輸入、未知系統參數、及外部擾動之同步問題。基於
    主-僕概念、李亞普諾夫穩定性定理,對於一類混沌系統,設計強健控制
    器,保證系統達到同步。首先,對於具匹配/非匹配擾動之混沌系統設計
    滑動模式控制器來保證系統可達到指數同步化,並討論其非匹配擾動對
    系統控制性能的影響。第二部份,對於一類具有線性plus-cubic 阻尼混沌
    對稱性陀螺儀系統提出滑動模式控制器的設計方法。第三部份,考慮輸
    入具死區非線性時,針對具混沌現象之陀螺儀系統,設計滑動模式控制
    器保證其同步化問題。第四部份,對於具未知混沌系統參數及具有外部
    擾動,經由適應性滑動模式控制設計探討其同步化問題。最後,本文也
    提供一些說明的範例來證明所提出之主要結果。

    In this dissertation, the synchronization problem of a class of chaotic systems via the
    sliding mode control (SMC) approach is investigated. The main results are proposed to deal
    with the matched/unmatched nonlinearity, linear-plus-cubic damping, dead-zone nonlinear
    input, and unknown parameters and external disturbance for this class of chaotic systems.
    Based on the drive-response concept and the Lyapunov stability theory, some robust
    controllers are proposed to guarantee synchronization of chaotic systems. Firstly, a SMC
    technique is introduced for exponential synchronization of chaotic systems with matched
    and/or unmatched nonlinear functions. Secondly, a SMC design for a chaotic symmetric
    gyro with linear-plus-cubic damping is addressed. Thirdly, using the SMC technique, a
    novel control law is established which guarantees the generalized projective
    synchronization for chaotic gyros coupled with dead-zone nonlinearity input. Fourthly, the
    synchronization of chaotic gyros with unknown parameters and external disturbance via
    adaptive sliding mode control is addressed. Several illustrative examples are included to
    demonstrate the effectiveness of the proposed synchronization schemes.

    中文摘要 I English Abstract II Acknowledgements III Table of Contents IV List of Figures VII Nomenclature IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Dissertation Outline 3 Chapter 2 Exponential Synchronization of Chaotic Systems Subject to Uncertainties in the Control Input 5 2.1 Problem Formulation 5 2.2 Main Results 8 2.2.1 Switching Surface Design 8 2.2.2 Sliding Mode Controller Design 11 2.3 Illustrative Example 14 Chapter 3 Synchronization of Chaotic Symmetric Gyro Systems with Linear-Plus-Cubic Damping 22 3.1 Problem Formulation 22 3.2 Main Results 24 3.2.1 Switching Surface Design 24 3.2.2 Variable Structure Control Design 25 3.3 Illustrative Example 27 Chapter 4 Generalized Projective Synchronization of Chaotic Nonlinear Gyros Coupled with Dead-Zone Input 36 4.1 Problem Formulation 36 4.2 Main Results 38 4.2.1 Switching Surface Design 38 4.2.2 Sliding Mode Controller Design 39 4.3 Illustrative Example 41 Chapter 5 Adaptive Sliding Mode Control for Synchronization of Chaotic Ggyros with Fully Unknown Parameters 46 5.1 Synchronization Problem Formulation and ASMC Design 47 5.2 Main Results 50 5.3 Illustrative Example 53 Chapter 6 Conclusions and Future Works 60 6.1 Conclusions 60 6.2 Future Works 61 References 62 自述 66

    [Ban. 1] B. Vandyopadhyay and S.Janardhanan, Discrete-Time Sliding Mode Control,
    Springer, 2006.
    [Che.1] M. Chen, D. Zhou , Y. Shang, 「A new observer-based synchronization scheme
    for private communication」, Chaos Solitons & Fractals. 24 (2005) 1025-1030.
    [Che.2] S.H. Chen, Q. Yang, C.P. wang, 「Impulsive control and synchronization of
    unified chaotic system」, Chaos Solitons & Fractals. 20 (2004) 751-758.
    [Che.3] H. K. Chen, 「Chaos and chaos synchronization of a symmetric gyro with
    linear-plus-cubic damping」, Journal of Sound and Vibration, 255 (2002) 719-740.
    [Doo] R. V. Dooren, Comments on 「Chaos and chaos synchronization of a symmetric
    gyro with linear-plus-cubic damping」, Journal of Sound and Vibration, 268 (2003)
    632-634.
    [Doy] J. C. Doyle, K. Glover, P. P Hhargonekar, B. A. Francis, 「State-space solutions to
    standard control problem」, IEEE Transactions on Automatic Control 34 (8)
    (1989) 831-846.
    [Edw] C. Edwards, S. K. Spurgeon and R. J. Patton, 「Sliding mode observers for fault
    detection and isolation」, Automatica 36 (2000) 541-548.
    [Fek] M. Feki, 「An adaptive chaos synchronization scheme applied to secure
    communication」, Chaos Solitons & Fractals. 18 (2003) 141–148.
    63
    [Ge] Z. M. Ge and H. K. Chen, 「Bifurcations and chaos in a rate gyro with harmonic
    excitation」, Journal of Sound and Vibration, 194 (1996) 107-117.
    [Guo] S. M. Guo, L. S. Shieh, G. Chen and C. F. Lin,」 Effective chaotic orbit tracker: a
    prediction-based digital redesign approach」, IEEE Transactions on Circuits and
    systems I, 47 (2000) 1557-1560.
    [Itk] U. Itkis, Control System of Variable Structure, New York: Wiley, 1976.
    [Jan] M. J. Jang, C. C. Chen , C. O. Chen, 「Sliding mode control of chaos in the cubic
    Chua』s circuit system」, International Journal of Bifurcation and Chaos, 12 (2002)
    1437-1449.
    [Kha] H. K. Khalil, Nonlinear Systems, Macmillan Publishing Company, New York,
    1992.
    [Lei] Y. Lei, W. Xu and H. Zheng, 「Synchronization of two chaotic nonlinear gyros
    using active control」, Physics Letter A, 343 (2005) 153-158.
    [Lia] T. L. Liao and S. H. Tsai, 「Adaptive synchronization of chaotic systems and its
    application to secure communications」, Chaos Solitons & Fractals. 11 (2000)
    1387–1396.
    [Lo] S. C. Lo , H. J. Cho, 「Chaos and control of discrete dynamic traffic model」,
    Journal of the Franklin Institute, 342 (2005) 839-851.
    [Pec] L. M. Pecora , T. L. Carroll, 「Synchronization in chaotic systems", Physical
    64
    Review Letter. 64 (1990) 821–824.
    [Pop] V. M. Popov, Hyperstability of Control System, Springer-Verlag, Berlin; 1973.
    [Sch] R. Schmitz, 「Use of chaotic dynamical systems in cryptography」, Journal of the
    Franklin Institute, 338 (2001) 429-441.
    [Slo] J. E. Slotine, W Li, Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs,
    NJ; 1990.
    [Sun] J. T. Sun, Y. P. Zhang, Q.D. Wu, 「Impulsive control for the stabilization and
    synchronization of Lorenz systems」, Physics Letters A. 298 (2002) 153-160.
    [Tia] Y. P. Tian, X. Yu, 「Stabilization unstable periodic orbits of chaotic systems via an
    optimal principle」, Journal of the Franklin Institute, 337 (2000) 771-779.
    [Ton] X. Tong, N. Mrad, 「Chaotic motion of a symmetric gyro subjected to a harmonic
    base excitation」, Transactions of American Society of Mechanical Engineers,
    Journal of Applied Mechanics, 68 (2001) 681-684.
    [Utk] V. I. Utkin, Sliding Mode and their Applications in Variable Structure Systems,
    Moscow: Mir Editors, 1978.
    [Wan] C. Wang, S. S. Ge, 「Synchronization of two uncertain chaotic systems via
    adaptive backstepping」, International Journal of Bifurcation and Chaos,11 (2001)
    1743-1751.
    [Wu] T. Wu, M. S. Chen, 「Chaos control of the modified Chua』s circuit system」,
    65
    Physica D, 164 (2002) 53-58.
    [Yan.1] J. J. Yan, 「Sliding mode control for uncertain neutral delay-differential systems」,
    JSME International Journal Series C, 45 (3) (2002) 690-696.
    [Yan. 2] T. Yang, L. O. Chua, 「Secure communication via chaotic parameter modulation」,
    IEEE Transactions on Circuits and systems I, 43 (1996) 817-819.
    [Yan.3] J. J. Yan, 「Memoryless adaptive decentralized sliding mode control for uncertain
    large-scale systems with time-varying delays」, ASME Journal of Dynamic
    Systems, Measurement and Control,125 (2) (2003) 172-176.
    [Yau] H. T. Yau, 「Design of adaptive sliding mode controller for chaos synchronization
    with uncertainties」, Chaos Solitons & Fractals, 22 (2004) 341-347.
    [Yu] X. Yu, Y. Song, 「Chaos synchronization via controlling partial state of chaotic
    systems」, International Journal of Bifurcation and Chaos, 11 (2001) 1737-1741.
    [Zha] J. Zhang, C. Li, H. Zhang, J. Yu, 「Chaos synchronization using single variable
    feedback based on backstepping method」, Chaos Solitons & Fractals, 21 (2004)
    1183-1193.

    下載圖示 校內:2012-08-30公開
    校外:2012-08-30公開
    QR CODE