簡易檢索 / 詳目顯示

研究生: 游雅涵
Yu, Ya-Han
論文名稱: 普拉梭菌分泌的胞外囊泡改善肥胖相關的代謝性疾病
Faecalibacterium prausnitzii-derived extracellular vesicles improve metabolic disorders in obesity
指導教授: 蔡佩珍
Tsai, Pei-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 77
中文關鍵詞: 普拉梭菌肥胖代謝性疾病胞外囊泡胰島素阻抗
外文關鍵詞: F. prausnitzii, obesity, metabolic disorders, extracellular vesicles (EVs), insulin resistance
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT II 致謝 III CONTENTS IV INDEX OF FIGURES VI LIST OF ABBREVIATION 1 1. INTRODUCTION 2 1.1 Obesity and related metabolic disorders 2 1.2 Relevance of ob/ob mice in obesity research 2 1.3 Gut microbiota in metabolic health 3 1.4 The role of Faecalibacterium prausnitzii in host metabolic health 4 1.5 Extracellular vesicles 4 1.6 Modulation of insulin signalling and AMPK pathways in obesity 5 1.7 Peroxisome Proliferator-Activated Receptor Gamma(PPARγ)is critically determined fat distribution, especially between visceral and subcutaneous depots 6 1.8 Study rationale and objectives 7 2. MATERIALS AND METHODS 8 2.1 F. prausnitzii NCKUMT001 supernatant preparation 8 2.2 F. prausnitzii NCKUMT001 extracellular vesicles extraction 8 2.3 Labeling FPEVs with fluorescent dye 9 2.4 SDS-PAGE of F. prausnitzii NCKUMT001 supernatant and EVs proteins 9 2.5 3T3-L1 cell culture and differentiation 10 2.6 Oil-Red O staining 10 2.7 FPEVs and drug treatment in vitro 11 2.8 Mice 11 2.9 Tissue distribution analysis of FPEVs by IVIS imaging 11 2.10 Obese models and treatment 12 2.11 Glucose tolerance tests, plasma insulin assay and HOMA‐IR index 12 2.12 Biochemical analyses 12 2.13 Micro-Computed Tomography (micro-CT) 13 2.14 Protein extraction 13 2.15 Protein concentration assay 13 2.16 Western blotting 14 2.17 DNA extraction 14 2.18 RNA extraction 14 2.19 Reverse transcription 15 2.20 Quantitative real-time PCR (qPCR) 15 3. RESULTS 16 3.1 Characterization of newly isolated F. prausnitzii NCKUMT001 EVs 16 3.2 F. prausnitzii NCKUMT001 EVs can be internalization by 3T3-L1 cell 16 3.3 F. prausnitzii NCKUMT001 EVs improve insulin signalling pathway in adipocyte 17 3.4 F. prausnitzii NCKUMT001 EVs improve insulin sensitivity by activating the AMPK pathway 18 3.5 Dynamic changes in F. prausnitzii NCKUMT001 EVs metabolism in ob/ob mice 19 3.6 Oral administration of F. prausnitzii NCKUMT001 EVs ameliorated metabolic disorders in ob/ob mice 19 3.7 F. prausnitzii NCKUMT001 EVs-induced body weight gain was not attributed to changes in lean mass 21 3.8 Administration of F. prausnitzii NCKUMT001 EVs modulated fat distribution in ob/ob mice 22 3.9 F. prausnitzii NCKUMT001 EVs activate PPARγ to modulate fat distribution 22 3.10 F. prausnitzii NCKUMT001 EVs activate PPARγ to improve adipose browning and fatty acid oxidation 23 4. DISCUSSION 25 4.1 Potential PPARγ agonist–like mechanisms of FPEVs in adipose tissue remodeling 25 4.2 FPEVs as a potential strategy to promote metabolically healthy obesity (MHO) 26 4.3 FPEVs as a safer alternative to TZDs: potential for dual modulation of AMPK and PPARγ in metabolic disorders 26 4.4 Clinical relevance of muscle preservation in obesity treatment 27 4.5 Future directions: deciphering the functional components of FPEVs 27 4.6 Future directions: refining animal models for FPEVs research 28 4.7 FPEVs as a novel and safer alternative to live bacteria therapy 28 REFERENCES 30 FIGURES 35 APPENDIX 54 SUPPLEMENTARY INFORMATION 61

    1. Lin, X. and H. Li, Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol (Lausanne), 2021. 12: p. 706978.
    2. Dhondge, R.H., et al., A comprehensive review of metabolic syndrome and its role in cardiovascular disease and Type 2 diabetes mellitus: mechanisms, risk factors, and management. Cureus, 2024. 16(8): p. e67428.
    3. Calle, E.E., et al., Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med, 2003. 348(17): p. 1625-1638.
    4. Divella, R., et al., Obesity, nonalcoholic fatty liver disease and sdipocytokines network in promotion of cancer. Int J Biol Sci, 2019. 15(3): p. 610-616.
    5. Fernandez, C.J., et al., Epidemiological link between obesity, type 2 diabetes mellitus and cancer. World J Methodol, 2021. 11(3): p. 23-45.
    6. Obradovic, M., et al., Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne), 2021. 12: p. 585887.
    7. Zhang, Y., et al., Positional cloning of the mouse obese gene and its human homologue. Nature, 1994. 372(6505): p. 425-432.
    8. Dubuc, P.U., The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice. Metabolism, 1976. 25(12): p. 1567-1574.
    9. Geurts, L., et al., Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol, 2011. 2: p. 149.
    10. Tilg, H. and A.R. Moschen, Microbiota and diabetes: an evolving relationship. Gut, 2014. 63(9): p. 1513-1521.
    11. Cani, P.D., et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007. 56(7): p. 1761-1772.
    12. Ridaura, V.K., et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 2013. 341(6150): p. 1241214.
    13. Canfora, E.E., J.W. Jocken, and E.E. Blaak, Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol, 2015. 11(10): p. 577-591.
    14. Mukhopadhya, I. and P. Louis, Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat Rev Microbiol, 2025.
    15. Wang, Z.B., et al., The potential role of probiotics in controlling overweight/obesity and associated metabolic parameters in adults: a systematic review and meta-analysis. Evid Based Complement Alternat Med, 2019. 2019: p. 3862971.
    16. Everard, A., et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 2013. 110(22): p. 9066-9071.
    17. Niu, Y., et al., Blautia Coccoides is a newly identified bacterium increased by leucine deprivation and has a novel function in improving metabolic disorders. Adv Sci (Weinh), 2024. 11(18): p. e2309255.
    18. Arumugam, M., et al., Enterotypes of the human gut microbiome. Nature, 2011. 473(7346): p. 174-180.
    19. Ferreira-Halder, C.V., A.V.S. Faria, and S.S. Andrade, Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol, 2017. 31(6): p. 643-648.
    20. Maioli, T.U., et al., Possible benefits of Faecalibacterium prausnitzii for obesity-associated gut disorders. Front Pharmacol, 2021. 12: p. 740636.
    21. Miquel, S., et al., Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol, 2013. 16(3): p. 255-261.
    22. Zhang, X., et al., Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One, 2013. 8(8): p. e71108.
    23. Sokol, H., et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16731-16736.
    24. Munukka, E., et al., Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. Isme j, 2017. 11(7): p. 1667-1679.
    25. Kim, J.H., et al., Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol, 2015. 40: p. 97-104.
    26. Sun, D., et al., From trash to treasure: the role of bacterial extracellular vesicles in gut health and disease. Front Immunol, 2023. 14: p. 1274295.
    27. Ye, L., et al., F. prausnitzii-derived extracellular vesicles attenuate experimental colitis by regulating intestinal homeostasis in mice. Microb Cell Fact, 2023. 22(1): p. 235.
    28. Le, T.K.C., et al., Insulin signaling and its application. Front Endocrinol (Lausanne), 2023. 14: p. 1226655.
    29. Varra, F.N., et al., Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review). Mol Med Rep, 2024. 29(6).
    30. Fazakerley, D.J., et al., Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMP-activated protein kinase activators in L6 myotubes. J Biol Chem, 2010. 285(3): p. 1653-1660.
    31. Gupta, P., A. Taiyab, and M.I. Hassan, Emerging role of protein kinases in diabetes mellitus: from mechanism to therapy. Adv Protein Chem Struct Biol, 2021. 124: p. 47-85.
    32. Coughlan, K.A., et al., AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes, 2014. 7: p. 241-253.
    33. Nandipati, K.C., S. Subramanian, and D.K. Agrawal, Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem, 2017. 426(1-2): p. 27-45.
    34. Tontonoz, P. and B.M. Spiegelman, Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem, 2008. 77: p. 289-312.
    35. Ma, X., et al., Deciphering the roles of PPARγ in adipocytes via dynamic change of transcription complex. Front Endocrinol (Lausanne), 2018. 9: p. 473.
    36. Laplante, M., et al., Mechanisms of the depot specificity of peroxisome proliferator-activated receptor gamma action on adipose tissue metabolism. Diabetes, 2006. 55(10): p. 2771-2778.
    37. Festuccia, W.T., et al., Depot-specific effects of the PPARgamma agonist rosiglitazone on adipose tissue glucose uptake and metabolism. J Lipid Res, 2009. 50(6): p. 1185-1194.
    38. Chen, C., et al., Quantitative assessment of lipophilic membrane dye-based labelling of extracellular vesicles by nano-flow cytometry. J Extracell Vesicles, 2023. 12(8): p. e12351.
    39. Xu, J. and K. Liao, Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation. J Biol Chem, 2004. 279(34): p. 35914-35922.
    40. Xu, Y., et al., Berberine modulates deacetylation of PPARγ to promote adipose tissue remodeling and thermogenesis via AMPK/SIRT1 pathway. Int J Biol Sci, 2021. 17(12): p. 3173-3187.
    41. Lee, S.J., et al., Relation between whole-body and regional measures of human skeletal muscle. Am J Clin Nutr, 2004. 80(5): p. 1215-1221.
    42. Mizuno, T., et al., Relationship between quadriceps muscle computed tomography measurement and motor function, muscle mass, and sarcopenia diagnosis. Front Endocrinol (Lausanne), 2023. 14: p. 1259350.
    43. Lubura, M., et al., Non-invasive quantification of white and brown adipose tissues and liver fat content by computed tomography in mice. PLoS One, 2012. 7(5): p. e37026.
    44. Tsai, Y.S., et al., Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARgamma. J Clin Invest, 2004. 114(2): p. 240-249.
    45. Choi, S.S., J. Park, and J.H. Choi, Revisiting PPARγ as a target for the treatment of metabolic disorders. BMB Rep, 2014. 47(11): p. 599-608.
    46. Ohno, H., et al., PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab, 2012. 15(3): p. 395-404.
    47. Mori, Y., et al., Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care, 1999. 22(6): p. 908-912.
    48. Schulze, M.B. and N. Stefan, Metabolically healthy obesity: from epidemiology and mechanisms to clinical implications. Nat Rev Endocrinol, 2024. 20(11): p. 633-646.
    49. Derosa, G., Efficacy and tolerability of pioglitazone in patients with type 2 diabetes mellitus: comparison with other oral antihyperglycaemic agents. Drugs, 2010. 70(15): p. 1945-1961.
    50. Rubenstrunk, A., et al., Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta, 2007. 1771(8): p. 1065-1081.
    51. Neeland, I.J., J. Linge, and A.L. Birkenfeld, Changes in lean body mass with glucagon-like peptide-1-based therapies and mitigation strategies. Diabetes Obes Metab, 2024. 26 Suppl 4: p. 16-27.
    52. Prado, C.M., et al., Muscle matters: the effects of medically induced weight loss on skeletal muscle. Lancet Diabetes Endocrinol, 2024. 12(11): p. 785-787.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE